Abstract:
Described herein is a system and method to enable braking system operation independent of conventional aircraft signals, such as those tied to the hibernation commands. Stated another way, the present disclosure relates to the enablement of a braking system in response to an initiation signal. In this way, the crew has the ability to force the braking system out of a hibernation mode into an “emergency type” braking mode if desired. The concepts described herein may be applicable to an electric braking system and to a hydraulic braking system.
Abstract:
A method is disclosed that comprises severing an I/O channel between an EMAC and an aircraft component; sending a test signal to the brake system controller; receiving, from the brake system controller, a feedback signal to the test signal; and determining an appropriateness of the feedback signal.
Abstract:
Systems and methods for indicating conditions for the appropriate inflation and/or deflation of tires are disclosed. Some systems and methods include measuring a variable affecting the internal gas temperature of a tire, calculating by the processor an estimated internal gas temperature of a tire, and determining whether a tire is appropriate to inflate and/or deflate.
Abstract:
An assembly mounted to a surface, the assembly includes a component; and a plurality of fingers connected to the component and in contact with the surface to provide a low impedance path between the component and the surface.
Abstract:
A brake control system (BCS) may comprise a first controller, a second controller in electronic communication with the first controller, and a valve comprising a first coil and a second coil. The first controller may be configured to actuate the valve via the first coil. The second controller may be configured to actuate the valve via the second coil. The first controller may be configured to disable the second controller to take over control of the valve.
Abstract:
A controller unit for an aircraft control system includes an interface that is electrically connectable to a controller slot of an electronics bay of the aircraft control system, a processor coupled to the interface, and a tangible non-transitory computer-readable medium having instructions stored thereon that, in response to execution by the processor, cause the processor to perform various operations. The various operations include identifying, by the processor, a first aircraft assembly in electrical communication with the controller slot of the electronics bay, identifying, by the processor, a first program code stored on the tangible non-transitory computer-readable medium corresponding to the first aircraft assembly, and selecting, by the processor, the first program code to control the first aircraft assembly.
Abstract:
A brake system of an aircraft may include a first brake control assembly, a second brake control assembly, a first brake control unit electrically coupled to the first brake control assembly, a second brake control unit electrically coupled to the second brake control assembly, and an arbitration control module. The arbitration control module may be configured to determine an operational integrity of the first brake control unit and the second brake control unit. In response to determining that one of the first brake control unit and the second brake control unit does not have sufficient operational integrity, the arbitration control module may enable the other of the first brake control unit and the second brake control unit to control both the first brake control assembly and the second brake control assembly.
Abstract:
A hydraulic brake valve system may comprise a valve housing comprising a brake port, a pressure port, a return port, and a valve actuation end; a valve shaft coupled to the valve actuation end, wherein the valve shaft may be comprised at least partially within the valve housing; and an electric actuator coupled to the valve shaft, wherein the electric actuator may be configured to move the valve shaft between a shaft on position and a shaft off position. The hydraulic brake valve system may be configured to pass hydraulic pressure through at least one of the brake port, the pressure port, or the return port in response to a position of the valve shaft.
Abstract:
A hydraulic brake valve system may comprise a valve housing comprising a brake port, a pressure port, a return port, and a valve actuation end; a valve shaft coupled to the valve actuation end, wherein the valve shaft may be comprised at least partially within the valve housing; and an electric actuator coupled to the valve shaft, wherein the electric actuator may be configured to move the valve shaft between a shaft on position and a shaft off position. The hydraulic brake valve system may be configured to pass hydraulic pressure through at least one of the brake port, the pressure port, or the return port in response to a position of the valve shaft.
Abstract:
A valve includes an electrical park valve configured to receive an electrical park signal and to allow hydraulic fluid to flow through a first electrically-controlled channel in response to the signal indicating a parking request, and a main valve configured to receive the hydraulic fluid from the first electrically-controlled channel and to allow the hydraulic fluid to flow to a braking actuator in response to receiving the hydraulic fluid. The valve also includes an electrical emergency control valve configured to allow the hydraulic fluid to flow through a first control channel in response to a request for emergency braking. The valve also includes an emergency enable valve configured to receive the hydraulic fluid from the first control channel and to allow the hydraulic fluid to flow to the braking actuator in response to receiving the hydraulic fluid from the electrical emergency control valve.