Abstract:
A hazard detector includes a chassis configured to house components of the hazard detector. The chassis includes a front defining a central aperture. The front has a domed contour such that an outer edge of an inner portion extends beyond an outer periphery of the front. The inner surface tapers from the outer edge toward the inner portion. The detector includes a mesh formed to the contour of the front so the mesh is flat against the front. The mesh defines an aperture corresponding to the central aperture. The detector includes a grille secured to the chassis that defines an aperture corresponding to the central aperture and defines openings positioned along the grille. An inner surface of the grille includes a contour corresponding to the contour of the front so the mesh is flat against the inner surface. The mesh is positioned between the grille and the chassis.
Abstract:
According to one embodiment, a hazard detector may include a back plate and a front casing coupled to the back plate to define a housing having an interior region and an opening through which air flows into the interior region. A circuit board may be coupled to the back plate and have a plurality of components mounted thereon. A smoke chamber may be mid-mounted on the circuit board, mid-mounting being characterized in the smoke chamber extending through a hole formed in the circuit board such that a top surface of the smoke chamber is positioned above a top surface of the circuit board and a bottom surface of the smoke chamber is positioned below a bottom surface of the circuit board, whereby an interior region of the smoke chamber is accessible to smoke from both the top and bottom surfaces of the circuit board.
Abstract:
A hazard detector includes a chassis configured to house components of the hazard detector. The chassis includes a front defining a central aperture. The front has a domed contour such that an outer edge of an inner portion extends beyond an outer periphery of the front. The inner surface tapers from the outer edge toward the inner portion. The detector includes a mesh formed to the contour of the front so the mesh is flat against the front. The mesh defines an aperture corresponding to the central aperture. The detector includes a grille secured to the chassis that defines an aperture corresponding to the central aperture and defines openings positioned along the grille. An inner surface of the grille includes a contour corresponding to the contour of the front so the mesh is flat against the inner surface. The mesh is positioned between the grille and the chassis.
Abstract:
According to one embodiment, a displacement control member may be operationally coupled with a selectable button of a hazard detector so that axial depression of the selectable button effects pivoting of the selectable button and the displacement control member into contact with a switch of the hazard detector. The displacement control member may be coupled with the selectable button so that a ratio of a distance from the switch to a point of user contact with the selectable button and a distance from the switch to a pivot point of the displacement control member is similar regardless of where the user contacts the selectable button. The displacement control member may equalize a user input force that is required to activate the hazard detector's switch.
Abstract:
According to one embodiment, a hazard detector may include a back plate and a front casing coupled to the back plate to define a housing having an interior region and an opening through which air flows into the interior region. A circuit board may be coupled to the back plate and have a plurality of components mounted thereon. A smoke chamber may be mid-mounted on the circuit board, mid-mounting being characterized in the smoke chamber extending through a hole formed in the circuit board such that a top surface of the smoke chamber is positioned above a top surface of the circuit board and a bottom surface of the smoke chamber is positioned below a bottom surface of the circuit board, whereby an interior region of the smoke chamber is accessible to smoke from both the top and bottom surfaces of the circuit board.
Abstract:
According to one embodiment, a hazard detector may include a back plate and a front casing coupled to the back plate to define a housing having an interior region and an opening through which air flows into the interior region. A circuit board may be coupled to the back plate and have a plurality of components mounted thereon. A smoke chamber may be mid-mounted on the circuit board, mid-mounting being characterized in the smoke chamber extending through a hole formed in the circuit board such that a top surface of the smoke chamber is positioned above a top surface of the circuit board and a bottom surface of the smoke chamber is positioned below a bottom surface of the circuit board, whereby an interior region of the smoke chamber is accessible to smoke from both the top and bottom surfaces of the circuit board.