Abstract:
An attachment mechanism for mounting an electronic device to a surface including a mounting plate configured to attach to the surface, the mounting plate having at least one projection, and a base configured to releasably couple to the mounting plate. The base may include a first biasing member, and a first arm pivotably coupled to the base and biased toward a first direction by the first biasing member, the first arm configured to interlock with the at least one projection when the base is coupled to the mounting plate. The base may further include a release mechanism coupled to the first arm such that actuation of the release mechanism when the base is coupled to the mounting plate in a secured engagement causes movement of the first arm in a second direction to disengage the first arm from the at least one projection to enable detachment of the base from the mounting plate.
Abstract:
According to one embodiment, a hazard detector may include a back plate and a front casing coupled to the back plate to define a housing having an interior region and an opening through which air flows into the interior region. A circuit board may be coupled to the back plate and have a plurality of components mounted thereon. A smoke chamber may be mid-mounted on the circuit board, mid-mounting being characterized in the smoke chamber extending through a hole formed in the circuit board such that a top surface of the smoke chamber is positioned above a top surface of the circuit board and a bottom surface of the smoke chamber is positioned below a bottom surface of the circuit board, whereby an interior region of the smoke chamber is accessible to smoke from both the top and bottom surfaces of the circuit board.
Abstract:
According to one embodiment, an access door for a hazard detector includes a release member that releasably secures the access door in a closed position over a battery compartment of the hazard detector. The release member allows the access door to be pivoted open and closed relative to the battery compartment and hazard detector. The access door also includes a first hinge member and a second hinge member. The first hinge member enables the access door to pivot along a first pivot path and by a first pivot amount and the second hinge member enables the access door to pivot along a second pivot path and by a second pivot amount. A cumulative total of the first pivot amount and the second pivot amount is substantially greater than either pivot amount alone.
Abstract:
According to one embodiment, an access door for a hazard detector includes a release member that releasably secures the access door in a closed position over a battery compartment of the hazard detector. The release member allows the access door to be pivoted open and closed relative to the battery compartment and hazard detector. The access door also includes a first hinge member and a second hinge member. The first hinge member enables the access door to pivot along a first pivot path and by a first pivot amount and the second hinge member enables the access door to pivot along a second pivot path and by a second pivot amount. A cumulative total of the first pivot amount and the second pivot amount is substantially greater than either pivot amount alone.
Abstract:
According to one embodiment, a hazard detector may include a back plate and a front casing coupled to the back plate to define a housing having an interior region and an opening through which air flows into the interior region. A circuit board may be coupled to the back plate and have a plurality of components mounted thereon. A smoke chamber may be mid-mounted on the circuit board, mid-mounting being characterized in the smoke chamber extending through a hole formed in the circuit board such that a top surface of the smoke chamber is positioned above a top surface of the circuit board and a bottom surface of the smoke chamber is positioned below a bottom surface of the circuit board, whereby an interior region of the smoke chamber is accessible to smoke from both the top and bottom surfaces of the circuit board.
Abstract:
The various implementations described herein include a video camera assembly that includes: (1) a housing; (2) an image sensor positioned within the housing and having a field of view corresponding to a scene in the smart home environment; and (3) a concave-shaped front face positioned in front of the image sensor such that light from the scene passes through the front face prior to entering the image sensor; where the front face includes: (a) an inner section corresponding to the image sensor; and (b) an outer section between the housing and the inner section, the outer section having a concave shape that extends from an outer periphery of the outer section to an inner periphery of the outer section; and where the concave shape extends around an entirety of the outer periphery.
Abstract:
Various arrangements for light distribution incorporated as part of a device are presented. A circular light guide may be used that receives light from a plurality of light emitters that can be arranged in a circular pattern. A conical reflector may be used and may be positioned to reflect light emitted from the circular light guide onto an exterior of a case of the device. The conical reflector may reflect light such that light is reflected by the exterior of the case in the shape of a halo into an ambient environment of the device.
Abstract:
According to one embodiment, an access door for a hazard detector includes a release member that releasably secures the access door in a closed position over a battery compartment of the hazard detector. The release member allows the access door to be pivoted open and closed relative to the battery compartment and hazard detector. The access door also includes a first hinge member and a second hinge member. The first hinge member enables the access door to pivot along a first pivot path and by a first pivot amount and the second hinge member enables the access door to pivot along a second pivot path and by a second pivot amount. A cumulative total of the first pivot amount and the second pivot amount is substantially greater than either pivot amount alone.
Abstract:
According to one embodiment, a displacement control member may be operationally coupled with a selectable button of a hazard detector so that axial depression of the selectable button effects pivoting of the selectable button and the displacement control member into contact with a switch of the hazard detector. The displacement control member may be coupled with the selectable button so that a ratio of a distance from the switch to a point of user contact with the selectable button and a distance from the switch to a pivot point of the displacement control member is similar regardless of where the user contacts the selectable button. The displacement control member may equalize a user input force that is required to activate the hazard detector's switch.
Abstract:
According to one embodiment, an access door for a hazard detector includes a release member that releasably secures the access door in a closed position over a battery compartment of the hazard detector. The release member allows the access door to be pivoted open and closed relative to the battery compartment and hazard detector. The access door also includes a first hinge member and a second hinge member. The first hinge member enables the access door to pivot along a first pivot path and by a first pivot amount and the second hinge member enables the access door to pivot along a second pivot path and by a second pivot amount. A cumulative total of the first pivot amount and the second pivot amount is substantially greater than either pivot amount alone.