Abstract:
A rubber valve body for sealed battery includes a rubber composition containing a resin in an amount of 20% by mass or more and an inorganic substance, wherein the melting point of the resin is in a range of 100 to 165° C.
Abstract:
An energy storage device including a spiral electrode group in which a first electrode plate and a second electrode plate having polarity reverse to that of the first electrode plate are spirally wound with a separator interposed therebetween, wherein the second electrode plate is opposed to an inner circumference and an outer circumference of the first electrode plate, portions of the separator are reinforced, the reinforced portions of the separator include a first reinforced portion formed between a winding-start end of the first electrode plate and the second electrode plate located on a radially outer side of the winding-start end, and a second reinforced portion formed between the winding-start end of the first electrode plate and the second electrode plate located on a radially inner side of the winding-start end, and the first reinforced portion and the second reinforced portion are arranged apart from each other.
Abstract:
A battery includes: a cylindrical battery case; and an electrode body disposed in the battery case, and including a positive plate, a negative plate, and a separator disposed between the positive plate and the negative plate. A spacer formed of a dense body and an electrolyte storage space storing an electrolyte are provided between the electrode body and the battery case on one end or both ends of the battery case in an axial direction of the electrode body.
Abstract:
A hydrogen storage alloy with at least two phases containing La, Ni, and Y or a heavy rare earth element, including a first phase having a composition represented by the general formula R1aR2bR3cNidR4e (wherein R1 is at least one element essentially containing La, R2 is at least one element selected from the group consisting of Y and a heavy rare earth element, R3 is Ca and/or Mg, R4 is at least one element selected from the group consisting of Co, Mn and Al, and a, b, c, d and e are numerical values that satisfy the numerical expressions a+b+c=1, 0≦b≦0.3, 0≦c≦0.4, 3.0
Abstract translation:一种具有至少两相的含有La,Ni和Y的稀土元素的储氢合金或重稀土元素,包括具有由通式R1aR2bR3cNidR4e表示的组成的第一相(其中,R1是至少一种含有La的元素,R2是 选自Y和重稀土元素中的至少一种元素,R 3是Ca和/或Mg,R 4是选自Co,Mn和Al中的至少一种元素,a,b,c ,d和e是满足数学式a + b + c = 1,0 @ b @ 0.3,0 @ c @ 0.4,3.0
Abstract:
This disclosure provides a hydrogen storing alloy and a production method thereof. The hydrogen storing alloy has a chemical composition of a general formula R(1-x)MgxNiy, wherein R is one or more elements selected from rare earth elements comprising Y, x satisfies 0.05≤x≤0.3, and y satisfies 2.8≤y≤3.8. The ratio of the maximal peak intensity present in a range of 2θ=31°-33° to the maximal peak intensity present in a range of 2θ=41°-44° is 0.1 or less (including 0), as measured by X-ray diffraction in which a Cu—Kα ray is set as an X-ray source.
Abstract:
An alkaline storage battery includes a spiral electrode group with a positive plate and a negative plate spirally wound with a separator interposed therebetween. The separator includes a plurality of sulfone group-containing regions. The plurality of sulfone group-containing regions are separated from one another in a winding direction, and disposed to face the positive plate or the negative plate.
Abstract:
A nickel hydroxide for an alkaline secondary battery, wherein the nickel hydroxide contains α-nickel hydroxide particles and β-nickel hydroxide particles, and the ratio of the β-nickel hydroxide to the total amount of the nickel hydroxide is less than 75% by mass.
Abstract:
Disclosed is a negative electrode for an alkaline secondary battery, which can suppress elution of iron to improve the long-period storage property of the battery capacity even under conditions in which elution of iron in a substrate into an electrolyte solution tends to occur, and which can also suppress lowering of initial capacity and increase in internal resistance. Even under conditions in which the elution of iron in the substrate into an electrolyte solution tends to occur, including a case where there is a thin conductive protecting layer at the surface or where the conductive protecting layer has defects, by adding magnesium or a magnesium compound to the negative electrode for an alkaline secondary battery (excluding the case where magnesium is contained as a constituent element of a hydrogen storage alloy), the elution of iron can be suppressed, and thereby, the long-period storage property of the battery capacity can be improved and the lowering of the initial capacity and the increase in internal resistance can be suppressed.
Abstract:
Provided is a hydrogen storage alloy which is characterized in that two or more crystal phases having different crystal structures are layered in a c-axis direction of the crystal structures. The hydrogen storage alloy is further characterized in that a difference between a maximum value and a minimum value of a lattice constant a in the crystal structures of the laminated two or more crystal phases is 0.03 Å or less.