Abstract:
A reflective display device has multiple display pixels. Each pixel has at least three color sub-pixels disposed side-by-side for three primary colors respectively. At least one color sub-pixel has a light shutter with adjustable transmission, a luminescent layer containing a luminescent material that emits light of a selected color, and a mirror for reflecting light corresponding to that selected color.
Abstract:
A low energy charged particle detector having a diode with a first layer and a top layer physically coupled to the first layer. The intersection between the first layer and the top layer defines a junction. The top layer is composed of a two-dimensional material such as a chalcogen-based material, providing an electrically passivated exposed outer surface opposite to the junction. The outer surface is exposed to receive low-energy charged particles from external sources. An appropriate control circuit is coupled to the diode, and operable to recognize the incidence of a particle upon the outer surface as a change in current or voltage potential.
Abstract:
The present invention relates to optical devices and, more particularly, to optical waveguide devices in which characteristics of a light signal are modulated or changed in accordance with an applied electric field. Conventionally, in such devices, such as, for example, a Mach-Zehnder modulator, DC drift problems, as are well known within the art, must be surmounted if the optical device is to meet minimum performance criteria. Suitably the present invention provides a layer of an oxide of silicon, preferably substantially, free of metallic impurities, where the ratio of oxygen to silicon is greater than 2 and is preferably greater than or equal to 2.2.
Abstract:
The present invention includes a method and apparatus for storing data. Accordingly, a first aspect of the present invention is a data storage device. The data storage device includes a conduction barrier, a probe tip mounted on a suspension mechanism, a voltage source coupled to the suspension mechanism for emitting a current of electrons through the conduction barrier, a sensing mechanism for sensing a magnitude of the emitted current wherein the magnitude of the current of electrons emitted through the conduction barrier is based on a distance between the probe tip and the sensing mechanism.
Abstract:
An implantable nanosensor includes a stent to be implanted inside a fluid conduit. The stent has a well in a surface of the stent. The implantable nanosensor further includes a nanoscale-patterned sensing substrate disposed in the well. The nanoscale-patterned sensing substrate is to produce an optical scattering response signal indicative of a presence of an analyte in a fluid carried by the fluid conduit when interrogated by an optical stimulus signal.
Abstract:
The present disclosure is directed towards emissive dendrimer compositions, luminescence-based pixels, luminescence-based sub-pixels, and associated methods with an emissive dendrimer having various structures as described herein.
Abstract:
According to an example, an apparatus for performing spectroscopy includes a parabolic reflector and a plurality of surface-enhanced Raman spectroscopy (SERS) elements spaced from the parabolic reflector and positioned substantially at a focal point of the parabolic reflector. The parabolic reflector is to reflect Raman scattered light emitted from molecules in a near field generated by the plurality of SERS elements to substantially increase the flux of the Raman scattered light emitted out of the apparatus.
Abstract:
A method of and apparatus for obtaining radiation transmission data from a liquid in such manner that allows some data about relative proportions of constituent ingredients to be derived is described. A radiation source and a radiation detector system able to resolve transmitted intensity across a plurality of frequencies within the spectrum of the source are used to produce transmitted intensity data for each such frequency. Measured data is compared numerically to a mass attenuation data library storing mass attenuation data, individually or collectively, for a small number of expected constituent ingredients of the liquid to fit each intensity data item to the relationship given by the exponential attenuation law: I/IO=exp [−(μ/ρ) ρt] in respect of the constituent ingredients and derive therefrom an indication of relative proportions of each constituent ingredient.
Abstract:
A display element comprises a cell containing a fluid including a plurality of wells at the bottom of the cell. A luminescent material is within the cell for modulating light incident from the top of the cell and for returning luminescent light; and a dispersion of particles is contained within the fluid. The dispersion of particles is movable between a first state in which the particles are substantially contained within the plurality of wells and a second state in which the particles are distributed between the top and bottom of the cell, to control the intensity of luminescent light returned by the display element.
Abstract:
A traveling wave dielectrophoresis display includes a display cell and a plurality of first particles contained within the display cell, the plurality of first particles having a first color. A plurality of electrodes in proximity to the display cell and generate a traveling wave dielectrophoresis field which distributes the plurality of first particles within the display cell to alter its optical characteristics.