摘要:
A single unified level one instruction(s) cache in which some lines may contain traces and other lines in the same congruence class may contain blocks of instruction(s) consistent with conventional cache lines. Formation of trace lines in the cache is delayed on initial operation of the system to assure quality of the trace lines stored.
摘要:
A single unified level one instruction cache in which some lines may contain traces and other lines in the same congruence class may contain blocks of instructions consistent with conventional cache lines. Power is conserved by guiding access to lines stored in the cache and lowering cache clock speed relative to the central processor clock speed.
摘要:
A design structure embodied in a machine readable storage medium for designing, manufacturing, and/or testing a design for a single unified level one instruction cache in which some lines may contain traces and other lines in the same congruence class may contain blocks of instructions consistent with conventional cache lines is provided. A mechanism is described for indexing into the cache, and selecting the desired line. Control is exercised over which lines are contained within the cache. Provision is made for selection between a trace line and a conventional line when both match during a tag compare step.
摘要:
A design structure embodied in a machine readable storage medium for at least one of designing, manufacturing, and testing a design for register renaming allows processor hardware to use a larger set of registers than the architected registers visible to the compiler. This larger set of registers is called the physical register file. Thus, dynamically renaming every compiler-suggested architected register to a microarchitecture-specific physical register, allows the processor to overcome name dependencies and the hazards (pipeline slowdowns) induced by name dependencies.
摘要:
A single unified level one instruction cache in which some lines may contain traces and other lines in the same congruence class may contain blocks of instructions consistent with conventional cache lines. Instruction branches are predicted taken or not taken using a highly accurate branch history table (BHT). Branches that are predicted not taken are appended to a trace buffer and the next basic block is constructed from the remaining instructions in the fetch buffer. Branches that are predicted taken flush the remaining fetch buffer and the next address is determined using a Branch Target Address Register (BTAC).
摘要:
A single unified level one instruction(s) cache in which some lines may contain traces and other lines in the same congruence class may contain blocks of instruction(s) consistent with conventional cache lines. Formation of trace lines in the cache is delayed on initial operation of the system to assure quality of the trace lines stored.
摘要:
Register renaming as contemplated by this invention allows processor hardware to use a larger set of registers than the architected registers visible to the compiler. This larger set of registers is called the physical register file. Thus, dynamically renaming every compiler-suggested architected register to a microarchitecture-specific physical register, allows the processor to overcome name dependencies and the hazards (pipeline slowdowns) induced by name dependencies. The invention here described differs from prior renaming techniques in that it extracts significant benefit from renaming with a fraction of the number of physical registers previously used for this process. The invention therefore also simplifies the logic involved in supporting the use of the physical registers.
摘要:
Mechanisms, in a data processing system, are provided for tracking effective addresses through a processor pipeline of the data processing system. The mechanisms comprise logic for fetching an instruction from an instruction cache and associating, by an effective address table logic in the data processing system, an entry in an effective address table (EAT) data structure with the fetched instruction. The mechanisms further comprise logic for associating an effective address tag (eatag) with the fetched instruction, the eatag comprising a base eatag that points to the entry in the EAT and an eatag offset. Moreover, the mechanisms comprise logic for processing the instruction through the processor pipeline by processing the eatag.
摘要:
A method and apparatus for dynamically managing instruction buffer depths for non-predicted branches reduces wasted energy and resources associated with low confidence branch prediction conditions. A portion of the instruction buffer for a instruction thread is allocated for storing predicted branch instruction streams and another portion, which may be zero-sized during high prediction confidence conditions, is allocated to the non-predicted branch instruction stream. The size of the buffers is adjusted dynamically in conformity with an on-going prediction confidence that provides a measure of how well branch prediction mechanisms are working for a given instruction thread. An alternate instruction fetch address table can be maintained and multiplexed with the main fetch address register for addressing the instruction cache, so that the instruction stream can be quickly shifted to the non-predicted path when a branch instruction is resolved to the non-predicted path.
摘要:
Mechanisms, in a data processing system, are provided for tracking effective addresses through a processor pipeline of the data processing system. The mechanisms comprise logic for fetching an instruction from an instruction cache and associating, by an effective address table logic in the data processing system, an entry in an effective address table (EAT) data structure with the fetched instruction. The mechanisms further comprise logic for associating an effective address tag (eatag) with the fetched instruction, the eatag comprising a base eatag that points to the entry in the EAT and an eatag offset. Moreover, the mechanisms comprise logic for processing the instruction through the processor pipeline by processing the eatag.