Abstract:
A printing fluid delivery system includes a reservoir, a conduit system, and a first heating module. The reservoir may store printing fluid. The conduit system may include a plurality of conduit segments to transport the printing fluid between the reservoir and the printing fluid applicator. The first heating module may selectively heat one conduit segment to increase a temperature of the printing fluid therein to a first temperature which is greater than a second temperature of the printing fluid in an other conduit segment, and to thermally induce recirculation of the printing fluid.
Abstract:
A method includes printing an image on substrate by a printhead using ultraviolet (UV) curable ink. The method includes selectively applying a first amount of UV radiation by a first region of a light source to a first area of the image after a first amount of time passes from printing the first area to form a first gloss level area having a glossy finish. The method also includes selectively applying a second amount of UV radiation by a second region of the light source to a second area of the image after a second amount of time passes from printing the second area to form a second gloss level area having a matte finish. At least one of the second amount of UV radiation is greater than the first amount of UV radiation and the first amount of time is greater than the second amount of time.
Abstract:
A printing fluid delivery system includes a reservoir, a conduit system, and a first heating module. The reservoir may store printing fluid. The conduit system may include a plurality of conduit segments to transport the printing fluid between the reservoir and the printing fluid applicator. The first healing module may selectively heat one conduit segment to increase a temperature of the printing fluid therein to a first temperature which is greater than a second temperature of the printing fluid in an other conduit segment and to thermally induce recirculation of the printing fluid.
Abstract:
A method includes printing an image on substrate by a printhead using ultraviolet (UV) curable ink. The method includes selectively applying a first amount of UV radiation by a first region of a light source to a first area of the image after a first amount of time passes from printing the first area to form a first gloss level area having a glossy finish. The method also includes selectively applying a second amount of UV radiation by a second region of the light source to a second area of the image after a second amount of time passes from printing the second area to form a second gloss level area having a matte finish. At least one of the second amount of UV radiation is greater than the first amount of UV radiation and the first amount of time is greater than the second amount of time.
Abstract:
An example method involves analyzing a plurality of perturbations of a printing system over a period of time, calculating statistics corresponding to each of the plurality of the perturbations of the printing system, after the duration of the period of time, executing an enhancement process for the printing system based on the calculated statistics of each of the perturbations, and adjusting settings of the printing system based on results of the enhancement process.
Abstract:
A printer is disclosed herein. The printer has a printhead having a plurality of ink nozzles for ejecting ink, a servicing mechanism for capturing the ejected ink from the ink nozzles, to service the printhead, and a control device coupled to the printhead and the servicing mechanism for regulating the servicing. As part of the regulation, the control device continues feeding a substrate towards the printhead during an idle period. The idle period of the printhead can be a duration when printing on the substrate is suspended. Further, the control device regulates ejection of ink from the ink nozzles towards the substrate during the idle period and operates the servicing mechanism during the idle period. In an example, the servicing mechanism captures the ink before the ink reaches the substrate.
Abstract:
An example method involves analyzing a plurality of perturbations of a printing system over a period of time, calculating statistics corresponding to each of the plurality of the perturbations of the printing system, after the duration of the period of time, executing an enhancement process for the printing system based on the calculated statistics of each of the perturbations, and adjusting settings of the printing system based on results of the enhancement process.
Abstract:
The present disclosure relates particularly but not exclusive to a method for printing in a multipass print mode using a first printhead (PT1) and a second printhead (PT2), the method including printing in a first pass a first image in a first area of a print medium using a first set (ST21) of nozzles (N5-N24) from the first printhead (PT1), printing in a second pass a coating layer over the first image using a second set (ST22) of nozzles (P4-P22) from the second printhead (PT2), and printing in a third pass a second image over the coating layer using a third set (ST23) of nozzles (N1-20) from the first printhead (PT1).
Abstract:
A printer is disclosed herein. The printer has a printhead having a plurality of ink nozzles for ejecting ink, a servicing mechanism for capturing the ejected ink from the ink nozzles, to service the printhead, and a control device coupled to the printhead and the servicing mechanism for regulating the servicing. As part of the regulation, the control device continues feeding a substrate towards the printhead during an idle period. The idle period of the printhead can be a duration when printing on the substrate is suspended. Further, the control device regulates ejection of ink from the ink nozzles towards the substrate during the idle period and operates the servicing mechanism during the idle period. In an example, the servicing mechanism captures the ink before the ink reaches the substrate.
Abstract:
In one example of the disclosure, a first area of an image to be printed at a first gloss level is identified. A second area of the image to be printed at a lesser second gloss level is identified. Printing of the image is caused in a gloss-varying printmode that applies a pretreatment fluid to a media where the second area is to be printed, and not where the first area is to be printed, and applies a colorant or colorants to the media where the first and second areas are to be printed.