Abstract:
In one embodiment, a device for a printer includes a movable tray for supporting a print media. The tray is movable between an open position in which media may be moved on to the tray and a closed position in which media is blocked from moving on to the tray. The device also includes a rotatable media drive component for moving print media on to the tray and a movable restraint operatively connected to the tray. The restraint is movable between: a first position, corresponding to the open position of the tray, in which the restraint does not restrain the media drive component; and a second position, corresponding to the closed position of the tray, in which the restraint restrains rotation of the media drive component.
Abstract:
In one embodiment, a device for a printer includes a movable tray for supporting a print media. The tray is movable between an open position in which media may be moved on to the tray and a closed position in which media is blocked from moving on to the tray. The device also includes a rotatable media drive component for moving print media on to the tray and a movable restraint operatively connected to the tray. The restraint is movable between: a first position, corresponding to the open position of the tray, in which the restraint does not restrain the media drive component; and a second position, corresponding to the closed position of the tray, in which the restraint restrains rotation of the media drive component.
Abstract:
Embodiments provide methods, apparatuses, and systems for compressing media in a media stack. In various embodiments, a paddle moves between various positions. During the move, the paddle is configured to compress the media stack.
Abstract:
In some examples, the disclosure describes a device that includes a first media tray positioned at a media input of a pick and separation mechanism, a second media tray positioned at the media input of the pick and separation mechanism, a media scan guide to position a sheet of print media at the media input of the pick and separation mechanism, a shared media path comprising a turn roller to receive the sheet of print media from the pick and separation mechanism from a first direction and provide the sheet of print media to a print zone in a second direction, and an output zone to receive the sheet of print media from the shared media path.
Abstract:
An example ink tank includes a cap with a preloaded hinge that biases the cap to a fully opened position when the cap is unlatched. The cap in the fully opened position interferes with and prevents the closure of a door that provides access to the ink tank. The door includes a sensor that locks out the print function when the door is open, effecting a printer lockout when the cap of the ink tank is opened for filling.
Abstract:
An example ink tank includes a cap with a preloaded hinge that biases the cap to a fully opened position when the cap is unlatched. The cap in the fully opened position interferes with and prevents the closure of a door that provides access to the ink tank. The door includes a sensor that locks out the print function when the door is open, effecting a printer lockout when the cap of the ink tank is opened for filling.
Abstract:
A media retraction system includes a loadstop shaft rotatable about an axis thereof, and a loadstop paddle rotatably coupled with and slidably mounted on the loadstop shaft such that the loadstop paddle is slidable about the axis of the loadstop shaft.
Abstract:
In one example, a printing device is described. The printing device may include a transport roller to move a print medium through the printing device, a sensor to detect a trailing edge of the print medium, a processor, and a non-transitory computer-readable medium storing instructions. In one example, the instructions, when executed by the processor, cause the processor to move the print medium toward an output of the printing device via the transport roller after a printing to the print medium, detect the trailing edge of the print medium via the sensor during a movement of the print medium via the transport roller, and hold the print medium in a position in contact with the transport roller, in response to a detection of the trailing edge of the print medium via the sensor.
Abstract:
In one example, a printing device is described. The printing device may include a transport roller to move a print medium through the printing device, a sensor to detect a trailing edge of the print medium, a processor, and a non-transitory computer-readable medium storing instructions. In one example, the instructions, when executed by the processor, cause the processor to move the print medium toward an output of the printing device via the transport roller after a printing to the print medium, detect the trailing edge of the print medium via the sensor during a movement of the print medium via the transport roller, and hold the print medium in a position in contact with the transport roller, in response to a detection of the trailing edge of the print medium via the sensor.
Abstract:
In one embodiment, a device for a printer includes a movable tray for supporting a print media. The tray is movable between an open position in which media may be moved on to the tray and a closed position in which media is blocked from moving on to the tray. The device also includes a rotatable media drive component for moving print media on to the tray and a movable restraint operatively connected to the tray. The restraint is movable between: a first position, corresponding to the open position of the tray, in which the restraint does not restrain the media drive component; and a second position, corresponding to the closed position of the tray, in which the restraint restrains rotation of the media drive component.