Abstract:
Provided is an electrode for a secondary cell capable of obtaining excellent output values and input values when used in the secondary cell. The electrode for a secondary cell is formed of an electrode mixture layer molded body formed of an active material and at least one of a carbon nanotube and a three-dimensional carbon nanotube fiber bundle skeleton formed of a plurality of carbon nanotubes that intersect one another to form an aggregation, which are in intimate contact with the surface of the active material; and a current collector layered on the electrode mixture layer molded body. The electrode mixture layer molded body includes a first roughened surface, and the current collector includes a second roughened surface. The first roughened surface of the electrode mixture layer molded body and the second roughened surface of the current collector are pressed and attached to each other.
Abstract:
There are provided an electrolyte-positive electrode structure which comprises a thin solid electrolyte and can develop excellent capacity and output, and a lithium ion secondary battery comprising the same. An electrolyte-positive electrode structure 7 comprises: a positive electrode 4 comprising a positive electrode active material layer 3 formed on a current collector 2; and a solid electrolyte 6 containing inorganic particles having lithium ion conductivity, an organic polymer, and a polymer gel, in which the organic polymer binds the inorganic particles and can be impregnated with the polymer gel, and the polymer gel holds an electrolyte solution and is impregnated into the organic polymer, wherein the positive electrode active material layer 3 is integrated with the solid electrolyte 6 using the organic polymer as a medium.
Abstract:
Provided are electrolytic solution absorbing particles that have an electrolytic solution retention property and can increase a lithium ion transport characteristic, as well as a self-supporting sheet that includes the same, a lithium-ion secondary battery electrode that includes the same, a separator that uses the same, and a lithium-ion secondary battery that uses the same. These particles are particles wherein a resin layer that can absorb an electrolytic solution is provided on a surface of a highly dielectric oxide solid. Specifically, these particles are electrolytic solution absorbing particles that have the resin layer that can absorb the electrolytic solution on the surface of the highly dielectric oxide solid.
Abstract:
Provided is a positive electrode including: a positive electrode current collector; and a positive electrode material mixture layer including a positive electrode active material and dielectric particles, the dielectric particles including ionically-conductive particles and non-ionically-conductive particles. Also provided is an electricity storage device including: the positive electrode; a negative electrode; and an electrolytic solution.
Abstract:
The present disclosure is intended to provide a negative electrode for a lithium-ion secondary battery, the negative electrode being capable of reducing an increase in internal resistance even when charge-discharge cycles are repeated, and enabling production of a lithium-ion secondary battery with excellent durability against the charge-discharge cycles. A negative electrode for a lithium-ion secondary battery includes: an electrode material mixture layer including graphite particles as a negative electrode active material, and a high dielectric inorganic solid. The graphite particles include graphite particles A having an average particle diameter and graphite particles B having a different average particle diameter. The graphite particles each include, on a surface thereof, a portion in contact with the high dielectric inorganic solid and a portion in contact with an electrolytic solution.
Abstract:
Provided are an electrode for a lithium ion secondary battery, and a lithium ion secondary battery, in which a reduction in the permeability of an electrolyte solution and an increase in resistance even when the density of the electrode is increased, can be suppressed. In the electrode for a lithium ion secondary battery, a layer in which the diffusion rate of an electrolyte solution is greater than in an active material layer is disposed between a current collector and an active material layer. Specifically, the electrode for a lithium ion secondary battery includes a current collector, and an electrode active material layer containing an electrode active material, the electrode active material layer being formed on at least one side of the current collector, in which an electroconductive layer containing solid electrolyte particles and electroconductive particles is disposed between the current collector and the electrode active material layer.
Abstract:
There are provided a constitution which can suppress a decrease in the cycle performance in repetition of charging and discharging, and a lithium ion secondary battery comprising the constitution. An electrolyte-negative electrode structure (7) comprises: a negative electrode (4) in which a negative electrode active material layer (3) comprising a material capable of intercalating lithium ions is formed on a current collector (2); and a solid electrolyte (6) comprising an inorganic particle having lithium ion conductivity, a polymer gel to be impregnated with an electrolyte solution, and an organic polymer acting as a binder for the inorganic particle and being capable of being impregnated with the polymer gel, wherein the negative electrode active material layer (3) and the solid electrolyte (6) are unified through the organic polymer as a medium.
Abstract:
A secondary battery according to the present invention includes: an electrode laminate having positive electrode layers, negative electrode layers, and a separator; an exterior body; a positive electrode terminal and a negative electrode terminal provided in the exterior body; a lead wire connecting between the positive electrode layers and the positive electrode terminal; and a lead wire connecting between the negative electrode layers and the negative electrode terminal. The separator has an extension portion extending outward beyond end portions of the positive electrode layers on a side connected with the positive electrode terminal. At least a part of a portion in contact with negative electrode layers on a surface of the separator on the negative electrode layer side is configured as a conductive region, and at least a part of an end portion of the extension portion on the positive electrode terminal side is configured as a nonconductive region.
Abstract:
Provided are: a lithium-ion secondary battery electrode with which it is possible to realize a battery having high volume energy density and in which capacity reduction due to repeated charging and discharging is suppressed even when the amount of electrolytic solution held by the electrode is low; a lithium-ion secondary battery using said electrode; and a method for manufacturing the lithium-ion secondary battery electrode. A lithium-ion secondary battery electrode in which a highly dielectric oxide solid and the electrolytic solution are positioned in the gaps between active material particles of an electrode mixture layer, wherein: the electrode mixture layer is prepared without using water that is reactive with the highly dielectric oxide solid; and the arrangement of the highly dielectric oxide solid in the electrode mixture layer is specified.
Abstract:
To provide a porous dielectric particle capable of achieving a lithium ion secondary battery having a high volumetric energy density, a high output, and being scarcely deteriorated in the output property even after charge and discharge are repeated, an electrode for a lithium ion secondary battery including the porous dielectric particle, and a lithium ion secondary battery using the electrode for a lithium ion secondary battery. A porous dielectric oxide is used, and this is dispersed and disposed in gaps between active material particles of an electrode. Specifically, as a particle to be blended in an electrode of a lithium ion secondary battery including an electrolytic solution, porous dielectric particles in which at least a part of a surface of porous core particles is coated with dielectric oxide is used.