Abstract:
A method for obtaining updated travel condition data at a vehicle is provided. The method identifies a subset of a predetermined travel route that is ahead of the vehicle, based on a selected distance quantity and a current position of the vehicle during traveling; and requests a set of data for the subset, the updated travel condition data comprising the set of data.
Abstract:
Systems and methods are provided for converting taxiway voice commands into taxiway textual commands. In various embodiments, the systems can comprise a radio receiver that is configured to receive the taxiway voice commands from an air traffic control center, a voice recognition processor coupled to the radio receiver that is configured to receive and convert the taxiway voice commands into the taxiway textual commands, and/or a taxiway clearance display coupled to the voice recognition processor that is configured to receive and display the taxiway textual commands.
Abstract:
A method for obtaining updated travel condition data at a vehicle is provided. The method identifies a subset of a predetermined travel route that is ahead of the vehicle, based on a selected distance quantity and a current position of the vehicle during traveling; and requests a set of data for the subset, the updated travel condition data comprising the set of data.
Abstract:
A maintenance assistance system and method of operating are provided. The maintenance assistance system may include, but is not limited to, a camera, a heads-up display, a memory configured to maintenance task data, and a processor communicatively coupled to the camera, the heads-up display and the memory, the processor configured to determine a component to be serviced, determine a location of the component based upon data from the camera and the maintenance task data stored in the memory, generate graphical data based upon a maintenance step associated with the component, and output the generated graphical data to the heads-up display
Abstract:
A system is configured to generate and display information regarding a strike zone of an aircraft. In some examples, a system is configured to generate and display an image of an environment around an aircraft together with a graphical indication of a strike zone of the aircraft, where the indication is scaled to reflect the strike zone at a distance range of one or more detected objects.
Abstract:
A maintenance assistance system and method of operating are provided. The maintenance assistance system may include, but is not limited to, a camera, a heads-up display, a memory configured to maintenance task data, and a processor communicatively coupled to the camera, the heads-up display and the memory, the processor configured to determine a component to be serviced, determine a location of the component based upon data from the camera and the maintenance task data stored in the memory, generate graphical data based upon a maintenance step associated with the component, and output the generated graphical data to the heads-up display
Abstract:
Systems and methods for performing airport surface collision-avoidance. A wingtip-mounted camera allows the pilot to positively ascertain that the wingtip will clear objects located in the video. An exemplary system implemented on an aircraft includes a wingtip module having a camera that generates a video stream and a communication device that transmits the generated video stream. A processor receives the video stream and generates a reticule for the video stream. A display device simultaneously presents the video stream and the reticule. The reticule includes a horizon line and is based on a focal length of a lens of the camera and height of the camera above ground. The reticule includes curved and/or straight distance lines and curved or straight travel lines. The travel line(s) correspond to at least one aircraft component or a zone of importance and are based on location of the camera and trajectory of the aircraft.
Abstract:
Systems and methods for aiding in pilot awareness of obstacles relative to aircraft features. An exemplary processor receives sensor information from one or more sensors mounted in an aircraft feature (e.g. light modules), determines if at least one obstacle is located within a predefined field of view based on the received sensor or database information and generates an image. The image includes an ownship icon having at least one feature representing wingtips of the aircraft and at least one indicator associated with the determined at least one obstacle. A display device presents the generated image. The display device presents a tip of a first sense coverage area adjacent to one wingtip feature associated with the port wing and a tip of the second sense coverage area adjacent to one wingtip feature associated with the starboard wing. The indicator is presented within at least one of the coverage areas.