Abstract:
Systems and methods of a security architecture for a connected aircraft are disclosed. In at least one embodiment, an avionics server comprises a plurality of device ports, wherein each of the plurality of device ports is coupled to a respective one of a plurality of device network interface cards and dedicated to a respective one of a plurality of avionics domains which corresponds to the respective device network interface card. Further, at least one processing device is configured to identify one or more signals from a respective user received at one or more of the plurality of device ports and to verify whether the user has access to the respective avionics domains that are dedicated to the one or more device ports over which the one or more signals are received.
Abstract:
Systems and methods of a security architecture for a connected aircraft are disclosed. In at least one embodiment, an avionics server comprises a plurality of device ports, wherein each of the plurality of device ports is coupled to a respective one of a plurality of device network interface cards and dedicated to a respective one of a plurality of avionics domains which corresponds to the respective device network interface card. Further, at least one processing device is configured to identify one or more signals from a respective user received at one or more of the plurality of device ports and to verify whether the user has access to the respective avionics domains that are dedicated to the one or more device ports over which the one or more signals are received.
Abstract:
Systems and methods for embedding a warning signal in a sensor pulse. When a taxi anticollision system of a host aircraft senses a threat headed for the aircraft, a warning signal is embedded in a sensor pulse to warn the offending vehicle that it is in the field of view of the host aircraft's sensor and is moving on a trajectory that is threatening collision with the host aircraft. Alternately, the radar issues a dedicated pulse for reading and alerting the receiving device.
Abstract:
Systems and methods for adaptively steering radar beam patterns for coverage during aircraft turns. The radar sensor system is mechanically or electrically steered to alter the radar sensor's beam pattern in order to adapt the radar sensor's field of view (FOV) to cover the area of anticipated aircraft wingtip trajectory. The anticipated trajectory is derived, for example, from the aircraft groundspeed, acceleration, heading, turn rate, tiller position, attitude, taxi clearance, etc.
Abstract:
Systems and methods for aiding in pilot awareness of obstacles relative to aircraft features. An exemplary processor receives sensor information from one or more sensors mounted in an aircraft feature (e.g. light modules), determines if at least one obstacle is located within a predefined field of view based on the received sensor or database information and generates an image. The image includes an ownship icon having at least one feature representing wingtips of the aircraft and at least one indicator associated with the determined at least one obstacle. A display device presents the generated image. The display device presents a tip of a first sense coverage area adjacent to one wingtip feature associated with the port wing and a tip of the second sense coverage area adjacent to one wingtip feature associated with the starboard wing. The indicator is presented within at least one of the coverage areas.
Abstract:
Systems and methods for embedding a warning signal in a sensor pulse. When a taxi anticollision system of a host aircraft senses a threat headed for the aircraft, a warning signal is embedded in a sensor pulse to warn the offending vehicle that it is in the field of view of the host aircraft's sensor and is moving on a trajectory that is threatening collision with the host aircraft. Alternately, the radar issues a dedicated pulse for reading and alerting the receiving device.
Abstract:
Systems and methods for embedding a warning signal in a sensor pulse. When a taxi anticollision system of a host aircraft senses a threat headed for the aircraft, a warning signal is embedded in a sensor pulse to warn the offending vehicle that it is in the field of view of the host aircraft's sensor and is moving on a trajectory that is threatening collision with the host aircraft. Alternately, the radar issues a dedicated pulse for reading and alerting the receiving device.
Abstract:
Systems and methods for embedding a warning signal in a sensor pulse. When a taxi anticollision system of a host aircraft senses a threat headed for the aircraft, a warning signal is embedded in a sensor pulse to warn the offending vehicle that it is in the field of view of the host aircraft's sensor and is moving on a trajectory that is threatening collision with the host aircraft. Alternately, the radar issues a dedicated pulse for reading and alerting the receiving device.
Abstract:
A system is configured to generate and display information regarding a strike zone of an aircraft. In some examples, a system is configured to generate and display an image of an environment around an aircraft together with a graphical indication of a strike zone of the aircraft, where the indication is scaled to reflect the strike zone at a distance range of one or more detected objects.
Abstract:
Systems and methods for aiding in pilot awareness of obstacles relative to aircraft features. An exemplary processor receives sensor information from one or more sensors mounted in an aircraft feature (e.g. light modules), determines if at least one obstacle is located within a predefined field of view based on the received sensor or database information and generates an image. The image includes an ownship icon having at least one feature representing wingtips of the aircraft and at least one indicator associated with the determined at least one obstacle. A display device presents the generated image. The display device presents a tip of a first sense coverage area adjacent to one wingtip feature associated with the port wing and a tip of the second sense coverage area adjacent to one wingtip feature associated with the starboard wing. The indicator is presented within at least one of the coverage areas.