Abstract:
In some examples, a system is configured to determine a reliability index for weather information received by a weather system. The reliability index may indicate a degree of confidence of the accuracy of the weather information. For example, a system may determine a weather product for each of one or more voxels of a plurality of voxels in a three-dimensional or four-dimensional volumetric buffer, and based on a combination of the weather product and the weather information, determine a reliability index for the weather product. The system may display a first visual representation of the weather product and a second visual representation of the corresponding reliability index.
Abstract:
A method for providing environmental data to a vehicle such as an aircraft is provided. The method includes receiving a request from a vehicle to provide environmental data, and defining a route plan vicinity area as a part of a coverage polygon. The method further includes receiving alternate/back-up destinations selected from a list and defining and including in the coverage polygon one or more connection areas between the route plan vicinity area and the selected alternate/back-up destinations. The method smooths the coverage polygon and assembles environmental data for the smoothed coverage polygon. The assembled environmental data is sent to the vehicle.
Abstract:
A method for obtaining updated travel condition data at a vehicle is provided. The method identifies a subset of a predetermined travel route that is ahead of the vehicle, based on a selected distance quantity and a current position of the vehicle during traveling; and requests a set of data for the subset, the updated travel condition data comprising the set of data.
Abstract:
A touch screen and method are provided for adjusting the positioning of user controls such as touch sensing objects in response adaptive conditions, for example, movement such as turbulence, aircraft vibration, and/or G forces, in which larger or spaced touch sensing objects would be beneficial.
Abstract:
An apparatus and method for receiving and processing weather data and flight plan data is disclosed. The apparatus includes a first display, an input unit, and a processor. The processor is configured to receive flight plan data and weather data, and to determine, based on the weather data, which weather characteristics is located within a predetermined range of a predetermined flight altitude value. The processor is further configured to instruct the first display to display those weather data which are located within the predetermined range above and below the input flight altitude value together with the flight plan data, and to instruct the first display to additionally display at least one element of the group consisting of the elements: strategic information weather, uplink weather, weather information from external weather data provider, onboard weather radar information, notice to airmen, aeronautical information service data, terminal area forecast, air-traffic related information.
Abstract:
Methods and systems are provided for optimizing aircraft operations using uplink weather data to identify predicted turbulent conditions. The method comprises uploading current weather data to a flight management system (FMS) of an aircraft. Areas of turbulence are identified according to the uploaded weather data including areas of turbulence along the client flight trajectory stored in the FMS of the aircraft. An optimal turbulence penetration speed is planned for each identified area of turbulence. The estimated time of arrival (ETA) and minimum and maximum estimate time of arrival (ETA min/max) for the aircraft is recalculated based on the optimal turbulence penetration speeds. The recalculated ETA and ETA min/max is automatically transmitted to an air traffic control (ATC) authority with the FMS of the aircraft.
Abstract:
Methods and systems are provided for optimizing aircraft operations using uplink weather data to identify predicted turbulent conditions. The method comprises uploading current weather data to a flight management system (FMS) of an aircraft. Areas of turbulence are identified according to the uploaded weather data including areas of turbulence along the client flight trajectory stored in the FMS of the aircraft. An optimal turbulence penetration speed is planned for each identified area of turbulence. The estimated time of arrival (ETA) and minimum and maximum estimate time of arrival (ETA min/max) for the aircraft is recalculated based on the optimal turbulence penetration speeds. The recalculated ETA and ETA min/max is automatically transmitted to an air traffic control (ATC) authority with the FMS of the aircraft.
Abstract:
An apparatus and method for receiving and processing weather data and flight plan data is disclosed. The apparatus includes a first display, an input unit, and a processor. The processor is configured to receive flight plan data and weather data, and to determine, based on the weather data, which weather characteristics is located within a predetermined range of a predetermined flight altitude value. The processor is further configured to instruct the first display to display those weather data which are located within the predetermined range above and below the input flight altitude value together with the flight plan data, and to instruct the first display to additionally display at least one element of the group consisting of the elements: strategic information weather, uplink weather, weather information from external weather data provider, onboard weather radar information, notice to airmen, aeronautical information service data, terminal area forecast, air-traffic related information.
Abstract:
A method for obtaining updated travel condition data at a vehicle is provided. The method identifies a subset of a predetermined travel route that is ahead of the vehicle, based on a selected distance quantity and a current position of the vehicle during traveling; and requests a set of data for the subset, the updated travel condition data comprising the set of data.
Abstract:
Methods and apparatus are disclosed for providing visual assistance to a flight crew on an aircraft during flight. The method comprises generating a graphical user interface (GUI) element that displays a target aircraft symbol that represents a target aircraft and a horizontal range symbol that represents a pre-selected horizontal distance ahead of an ownship aircraft. The method further comprises positioning the target aircraft symbol at a variable position on the GUI element away from the horizontal range symbol, wherein the distance between the target aircraft symbol and the horizontal range symbol is proportional to an actual horizontal distance between the target aircraft position and the pre-selected horizontal distance ahead of the ownship aircraft; and causing the GUI element and the symbols to be displayed on a cockpit display.