Abstract:
A blowing agent composition includes a blowing agent and a nucleating agent. The nucleating agent includes 1,2,2-trifluoro-1-trifluoromethylcyclobutane. The 1,2,2-trifluoro-1-trifluoromethylcyclobutane is present in the blowing agent composition in an amount from about 0.5 wt. % to about 7 wt. % of the blowing agent composition.
Abstract:
The present disclosure provides a degreasing apparatus which may be made at least partially, or substantially, of at least one plastic material, for use with solvents having relatively low boiling points that are chemically compatible with plastic materials, such as 1233zd (1-chloro-3,3,3-trifluoro-propene, CF3CH═CHCl). Plastic degreasing apparatuses may comprise a tank comprising a side wall and a bottom wall, a partition coupled to a lower portion of the tank, dividing the tank into an immersion sump and a vaporizing sump, a heating element located within the vaporizing sump, and a condensing element positioned above the lower portion, wherein at least one of the side wall, the bottom wall, and the partition is made of a plastic material.
Abstract:
Aspects of the present invention are directed to working fluids and their use in processes wherein the working fluids comprise compounds having the structure of formula (I): wherein R1, R2, R3, and R4 are each independently selected from the group consisting of: H, F, Cl, Br, and C1-C6 alkyl, at least C6 aryl, at least C3 cycloalkyl, and C6-C15 alkylaryl optionally substituted with at least one F, Cl, or Br, wherein formula (I) contains at least one F and at least one Cl or Br, provided that if any R is Br, then the compound does not have hydrogen. The working fluids are useful in Rankine cycle systems for efficiently converting waste heat generated from industrial processes, such as electric power generation from fuel cells, into mechanical energy or further to electric power. The working fluids of the invention are also useful in equipment employing other thermal energy conversion processes and cycles.
Abstract:
The present disclosure provides minimum-boiling, homogeneous azeotropic and azeotrope-like compositions of 1,2,2-trifluoro-1-trifluoromethylcyclobutane (“TFMCB”) with each of ethanol, n-pentane, cyclopentane, trans-1,2-dichloroethylene, and perfluoro(2-methyl-3-pentanone).
Abstract:
The present disclosure provides minimum-boiling, homogeneous azeotropic and azeotrope-like compositions of 1,2,2-trifluoro-1-trifluoromethylcyclobutane (“TFMCB”) with each of ethanol, n-pentane, cyclopentane, trans-1,2-dichloroethylene, and perfluoro(2-methyl-3-pentanone).
Abstract:
The present disclosure provides a formulation comprising a fluoroolefin, an amine neutralizer, a fixative polymer, and a solvent. The formulation may be trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)), and the amine neutralizer may be triethanolamine (TEA), triisopropanolamine (TIPA), or a mixture thereof. The formulation may be suitable for use as a personal care product, such as a hair spray.
Abstract:
The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
Abstract:
The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCl), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining trifluoroacetyl chloride (CF3COCl) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like composition.
Abstract:
The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
Abstract:
The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCl), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining trifluoroacetyl chloride (CF3COCl) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like composition.