Abstract:
The present invention provides a wireless communication method supporting hybrid automatic repeat request. The method includes: sending first hybrid automatic repeat request (HARQ) process quantity indication information to a user equipment UE; and if second HARQ process quantity indication information is further sent to the UE, determining a second HARQ process quantity according to the second HARQ process quantity indication information, and performing data transmission with the UE according to the determined second HARQ process quantity. Correspondingly, the present invention further provides a base station and the user equipment. In the present invention, the base station and the user equipment can perform data communication with the UE based on different HARQ timing relationships and HARQ process quantities, thereby being capable of better supporting UEs adopting different functional characteristics.
Abstract:
A frequency domain resource configuration method and apparatus, the method including obtaining, by a base station, a first frequency hopping parameter set of UE in N sub-bands, where the N sub-bands have a mapping relationship with a frequency hopping pattern that is indicated by the first frequency hopping parameter set, where the sub-band is a length of consecutive frequency domain resources in a system bandwidth, and where N≥1, and further including sending, by the base station, first configuration information to the UE, where the first configuration information includes sub-band identifiers of the N sub-bands and the first frequency hopping parameter set.
Abstract:
A frequency domain resource configuration method and apparatus, the method including obtaining, by a base station, a first frequency hopping parameter set of UE in N sub-bands, where the N sub-bands have a mapping relationship with a frequency hopping pattern that is indicated by the first frequency hopping parameter set, where the sub-band is a length of consecutive frequency domain resources in a system bandwidth, and where N≥1, and further including sending, by the base station, first configuration information to the UE, where the first configuration information includes sub-band identifiers of the N sub-bands and the first frequency hopping parameter set.
Abstract:
The present invention relates to the field of communications technologies, and discloses methods for transmitting and storing downlink data, a base station, and a terminal. In this solution, each time when a base station transmits downlink data, bits are selected in such a way that a length and a start point of a sequence that a terminal of any terminal category expects to receive in initial transmission (or retransmission) of a code block are the same as a length and a start point of a sequence that a transmit end determines to transmit for the same code block, so that the terminal can perform reliable decoding. Therefore, a disadvantage is avoided that the terminal cannot correctly perform storing and further cannot correctly perform decoding each time when the terminal stores a retransmitted code block for a same code block, and decoding accuracy of the terminal is improved.
Abstract:
Methods and nodes are provided for transmission of information, over at least one antenna port, in a subframe, which information is received by a receiver in a wireless communication system. Demodulation of the information entity by the receiver is enabled by also transmitting a Demodulation Reference Signal, DM-RS, comprising a DM-RS pattern, wherein positions in the DM-RS pattern are associated with at least one antenna port for transmission of the information entity. The method includes defining, for at least one subframe, a set of at least two distinct DM-RS patterns, assigning one DM-RS pattern, from the defined set of DM-RS patterns, to the receiver, and transmitting the information entity on the at least one antenna port associated with the assigned DM-RS pattern.
Abstract:
The present invention provides a downlink channel decoding method, a downlink information transmission method, a user equipment, and a base station. The downlink channel decoding method includes: determining, by a user equipment, a resource unit occupied by a DMRS; and decoding a downlink channel based on the DMRS transmitted on the resource unit. The present invention can enable different DMRS patterns to concurrently exist on an NCT carrier. In a downlink transmission process, a DMRS pattern used for downlink transmission is determined according to priorities of different channels and/or signals, which can ensure optimal performance of a high-priority channel and/or signal, and can further improve downlink transmission performance.
Abstract:
The present invention provides a wireless communication method supporting hybrid automatic repeat request. The method includes: sending first hybrid automatic repeat request (HARQ) process quantity indication information to a user equipment UE; and if second HARQ process quantity indication information is further sent to the UE, determining a second HARQ process quantity according to the second HARQ process quantity indication information, and performing data transmission with the UE according to the determined second HARQ process quantity. Correspondingly, the present invention further provides a base station and the user equipment. In the present invention, the base station and the user equipment can perform data communication with the UE based on different HARQ timing relationships and HARQ process quantities, thereby being capable of better supporting UEs adopting different functional characteristics.
Abstract:
Embodiments provide an information processing method, user equipment, and a base station, where the information processing method includes: obtaining, by user equipment, a coverage enhancement requirement; and communicating, by the user equipment, with a base station according to the coverage enhancement requirement. The user equipment obtains the coverage enhancement requirement and communicates with the base station according to the coverage enhancement requirement.
Abstract:
According to embodiments, a user equipment (UE) initiates a channel occupancy time (COT) following a successful listen before talk (LBT) procedure. The UE transmits to a second UE COT information indicating that the COT is sharable. The UE transmits a sidelink (SL) transmission in an unlicensed band within the COT.
Abstract:
According to embodiments, a first UE (e.g., UE A) receives from a second UE (e.g., UE B) a sidelink control information (SCI) in a first slot. The SCI comprises a resource reservation for a shared channel. The resource reservation indicates a set of frequency resources and a time resource assignment. The first UE transmits to the second UE a conflict indicator on resources of a feedback channel. The resources of the feedback channel include a second slot for transmitting the conflict indicator. A location of the second slot is based on one of the first slot or a slot indicated by the time resource assignment. The conflict indicator indicates a potential resource conflict or a detected resource conflict on at least one of the set of frequency resources or the time resource assignment indicated by the resource reservation.