Abstract:
An apparatus and associated method for manufacturing a window covering for an architectural opening. The apparatus includes a support structure handling assembly, an operating element handling assembly, and a vane handling assembly. The handling assemblies process the respective materials to an assembly station to attach one portion of a vane to the operating elements, and another portion of the vane to the support structure, allowing movement of one portion of the vane relative to other portion of the vane.
Abstract:
A covering for an architectural opening including a roller, an end rail, and a panel rotatable onto the roller and spanning between the roller and the end rail. The panel includes a front sheet, a rear sheet, and a cell spanning between the front and rear sheet. When the front sheet is at a first position relative to the rear sheet, the cell is open. When the front sheet is at a second position relative to the rear sheet, the cell is closed.
Abstract:
A process and system for manufacturing roller blinds is provided which includes structure for performing plural steps including a first step of helically winding slat fabric about a drum, thereby forming a slat product. A second step includes moving the slat product from the drum to a platform. A third step includes winding the slat product about a roller tube to form a roller blind. A fourth step includes moving the blind from the platform to a heat treating device.
Abstract:
The present disclosure is related to a unitary assembly for an architectural fenestration, providing dynamic solar heat gain control, which (1) provides a track-based frame structure/blind combination in which the blind is self-correcting should the blind material fall outside of the track; (2) provides directional shading, where the assembly provides for dynamically controlling the amount of light allowed to reach the heat storage unit; (3) provides a blind motor without limiter switches and with a quick-release slip-ring; and (4) provides a heat storage unit which is a thermally efficient, transparent and translucent structure, with which gain from sunny winter days is greater than nighttime loss, so as to provide supplemental heat.
Abstract:
Methods and apparatus to control an architectural opening covering assembly are disclosed herein. An example method disclosed herein includes determining a position of a covering of an architectural opening covering assembly. The example method further includes determining a speed at which the covering is to move via a motor based on the position and a period of time. The example method also includes operating a motor to move the covering at the speed.
Abstract:
A stacking panel covering for an architectural opening includes a headrail and a plurality of suspended from the headrail. The panels form an overlapped stack at one end of the headrail when the stacking panel covering is opened, and cover the architectural opening when the stacking panel covering is closed. The panels are piggybacked on those adjacent thereto, so that they stack, one behind the next, when the stacking panel covering is opened, and so that each pulls the next adjacent thereto as the stacking panel covering is being closed. The panels themselves may be planar, or convexly curved in a horizontal direction and substantially straight in a vertical direction.
Abstract:
A retractable cover for architectural openings having collapsible vanes includes a support structure in the form of a sheet of material, monofilaments, tapes, ribbons, cords, or the like, supporting an upper edge of a plurality of vertically spaced, horizontally extending vanes with the lower edges of the vanes in most embodiments of the invention being connected to operating elements adapted to raise the lower edges of each vane toward the upper edges to define openings or gaps between the vanes through which vision and light can pass in an open condition of the covering. Variations of the covering do not require movement of a lower edge of a vane relative to an upper edge but simply movement of some vanes relative to other vanes. The vanes can be made of materials having different flexibilities and where more rigid materials are used, creased fold lines can be established for desired operability.
Abstract:
A single-track stacking panel covering for an architectural opening has a headrail for mounting the covering above and in front of the opening, such as a window or door. The headrail has a single track. Suspended from the headrail and translatable therealong are panels oriented at a small angle relative to the headrail. When the covering is open, the panels form an overlappingly stacked array at one end of the headrail.
Abstract:
Apparatus and methods for controlling architectural opening coverings are described herein. An example apparatus includes a roller tube, a motor including a motor drive shaft and a motor casing, the motor casing to rotate with the roller tube, and a manual control including a manual control drive shaft coupled to the motor drive shaft, the motor to apply torque to the roller tube through rotation of the motor casing.
Abstract:
A covering for an architectural opening including a roller, an end rail, and a panel rotatable onto the roller and spanning between the roller and the end rail. The panel includes a front sheet, a rear sheet, and a cell spanning between the front and rear sheet. When the front sheet is at a first position relative to the rear sheet, the cell is open. When the front sheet is at a second position relative to the rear sheet, the cell is closed.