Abstract:
A method of producing a tubular body wherein a continuous fiber impregnated with a resin is wound around a mandrel body rotating together with a mandrel shaft section at a predetermined circumferential speed while the continuous fiber is reciprocated in parallel with a rotation axis of the mandrel body, including moving a feed roller that feeds the continuous fiber to the mandrel body without rotating from a middle of the mandrel body to one end of the mandrel body; hooking the continuous fiber by a return section provided at the one end of the mandrel body; winding the continuous fiber on the one end of the mandrel body while a center axis of the feed roller is orthogonal to a feeding direction of the continuous fiber; and rotating the center axis of the feed roller to move the feed roller in a reverse direction.
Abstract:
a reinforced elongate element (12) comprises a core (22) of elongate shape covered by at least one layer (33) of composite material comprising a plurality of tapes (32) wound at a settable winding angle around said core (22), each of the tapes (32) being made using glass or carbon threads or fibers (35) embedded in a matrix (34) of thermoplastic resin. The elongate element may be in the form of very long tubes suitable for use off-shore.
Abstract:
A filament winding apparatus includes a control unit, a rotation mechanism that rotates a mandrel, a hoop winding head that performs hoop-winding, and a helical winding head that performs helical-winding. The hoop winding head includes bobbins that feed fiber bundles to the mandrel and a circulation mechanism that circulates the bobbins around the mandrel. The control unit controls the rotation and circulation mechanisms such that the mandrel is rotated and the bobbins are circulated in the same direction during helical-winding. It is not necessary to cut fiber bundles after hoop-winding, and wasted fiber is not fed during helical-winding, thereby increasing economy and productivity.
Abstract:
In one aspect, a method of making a selected structure using composite materials is disclosed, which method in form includes providing a plurality of members each comprising a composite material, wherein each member is configured to be coupled to at least one other member in the plurality of members along a longitudinal side; coupling onsite the plurality of members along their longitudinal sides to form a base enclosed structure; and reinforcing onsite the base enclosed structure to form the selected structure.
Abstract:
A method and a device is provided for producing a flat or arc-shaped sliding element with a very large radius of curvature. The sliding element has a sliding layer based on a fiber reinforced plastic with a plastic matrix and a reinforcing element containing at least one thread. The reinforcing element is deposited on a polygonal winding core by means of a guide with the addition of a synthetic resin forming the plastic matrix. The flat or arc-shaped segments formed between the edges are separated from the tubular, polygonal winding body thus formed after it has set.
Abstract:
A vascular prosthesis is constructed from a structure having interconnected, helically oriented channel-porosity to allow oriented ingrowth of connective tissue into a wall of the prosthesis. The prosthesis can have a small internal diameter of 6 mm or less. Several different methods can be used to produce the prosthesis, including a fiber winding and extraction technique, a melt extrusion technique, and a particle and fiber extraction technique using either a layered method or a continuous method. Furthermore, mechanical properties of the prosthesis are matched with mechanical properties of the host vessel, thereby overcoming problems of compliance mismatch.
Abstract:
A method of manufacturing a sheet-molded compound (SMC) article having local reinforcement includes the steps of providing a mold for forming the SMC article, filling a portion of the mold with a chopped fiber compound and placing at least one filament-wound reinforcing element in a position in the mold where structural reinforcement of the SMC article is needed. The reinforcing element is formed by winding a resin-coated filament on a mandrel to form coils along a length of the mandrel, where each coil is wound at a predetermined angle relative to an axis of the mandrel. Heat and pressure are applied to the mold to cause the chopped fiber compound to melt such that the melted chopped fiber compound bonds with the reinforcing elements to form the SMC article with local reinforcement. The SMC article with local reinforcement is then removed from the mold.
Abstract:
Apparatus for the production and proper calibration of improved flexible hoses made by a soft thermoplastic material reinforced with a continuous spiral of rigid thermoplastic material. During their production the hoses do not rotate but are produced linearly and in their internal surface no longitudinal grooves are engraved. The melted coaxial materials are discharged through a rotating mechanism to a calibration unit which rotates with it and bears peripherally special inclined rollers on which is transmitted, via an epicyclic gearing system, a controlled rotation opposite to the above direction. On this calibration unit the plastic hose is formed successively, advancing linearly forward.
Abstract:
A composite structure for aircraft having features making it resistant to structural damage when subjected to lightning strikes. Fiber tow is wound over a rotating shaping surface which is a surface of revolution. Spaced bands of tow are laid down in a helical pattern with varying spaces between bands. Some bands are typically wound at an angle of about +45.degree.. By selectively winding in one direction and then the other, a "basketweave" pattern is obtained. Typically, the tow consists of high strength fibers in a thermosetting or thermoplastic resin matrix wound to a four layer thickness. When cured, the structure has high strength and low weight and is excellent for structures such as aircraft engine cowls. The basketweave pattern gives excellent resistance to peeling and delamination upon being struck by lightning, the types of damage which are likely to occur with the usual hoop or other continuous windings. The resistance to lightning strikes is further increased by winding one or more conductive filaments in a helical pattern, under tension, over the structure before the resin is cured. The conductive filaments serve to dissipate lightning energy over a large area and carry the charges away rapidly without being subject to peeling or separation from the composite structure surface.
Abstract:
An airspring sleeve and airspring that each have a chamber portion and rolling lobe portion reinforced with successive layers of embedded cord where cord in one layer is wound at opposite helical angles from cord of a second successive layer and where the cord is wound at inconstant helical angles in an annular band portion of least one of the sleeve portions.