摘要:
Disclosed is a rotor for a motor in a vehicle. More specifically, the rotor includes a rotation shaft serving as a center of rotation of the rotor, a core installed at the rotation shaft and comprising a plurality of teeth radially protruding with respect to the rotation shaft, a coil wound around the tooth to generate a magnetic field by an external power source, and a pair of permanent magnets installed at both sides of the teeth. Also disclosed is a synchronous motor including the rotor, and a wound rotor synchronous motor.
摘要:
A hairpin winding motor for a vehicle may include a hairpin including a pattern coil formed from a bundle of a plurality of coils; a stator including a slot in which the hairpin is arranged; and a rotor configured to move in response to the stator.
摘要:
A drive motor for a vehicle includes: a stator and a rotor, in which the stator includes: stator teeth which are disposed between multiple slots, respectively, the multiple slots being formed at predetermined intervals in a circumferential direction corresponding to an outer circumferential surface of the rotor, and have a blocking portion which protrudes toward one of the slots disposed at both sides, the blocking portion formed at one side of an inner circumferential surface of each of the stator teeth facing the rotor, and a groove which is formed radially outward at an opposite side of the inner circumferential surface of each of the stator teeth; and opening sections each of which is in communication with the slot and formed between the blocking portion and the opposite side of the inner circumferential surface of the stator tooth adjacent to the blocking portion, and the slot is opened radially through the opening section.
摘要:
A drive motor for a vehicle includes: a stator having a wound stator coil; a rotor that is spaced from the stator by a gap and is rotatably disposed in the stator; and a shielding film that is disposed between the stator coil and the rotor and is configured to shield a parasitic capacitance between the stator and the rotor.
摘要:
A bearing for a drive motor is provided. The bearing includes an inner race that is coupled to a rotation shaft, an outer race that is coupled to a motor housing, and rolling members that are rotatably disposed between a raceway surface of the inner race and a raceway surface of the outer race. Additionally, a retainer is disposed between the inner race and the outer race and supports the rolling members at a predetermined interval along a circumferential direction. A conductive guide member is formed in each of the inner race and the outer race and forms a current path between the inner race and the outer race through the retainer.
摘要:
A stator of an interior permanent magnet synchronous motor is provided. The stator spaced apart from a rotor by a predetermined gap within an interior permanent magnet synchronous motor includes a stator tooth that is circumferentially spaced apart by a predetermined distance while interposing a slot therebetween that corresponds to an exterior diameter surface of the rotor. Additionally, a stator shoe is formed at an end of the stator tooth and includes an interior diameter surface of a predetermined diameter that faces the exterior diameter surface of the rotor. A cross point between a circle has a diameter of (interior diameter of the stator shoe×1.0287×24/slot number) mm and the stator tooth is a tooth end start point of the stator tooth.
摘要:
Disclosed herein is a rotor permanent magnet apparatus for a drive motor based on temperature distribution. The permanent magnet may enhance coercivity without a substantial decrease in magnetic flux density Br by applying a grain boundary diffusion process of diffusing dysprosium on the surface of the permanent magnet based on the temperature distribution of the permanent magnet
摘要:
A method of extracting impedance parameters of a three-phase motor utilizes a five-terminal network including first to third winding wires and opposite shaft ends. The method includes connecting two terminals, selected from among the winding wires and the shaft ends, to input and output terminals in order to measure voltage and current of the terminals and to extract input impedance parameters of the five-terminal network, extracting conversion parameters including voltage and current transfer matrices in a common mode, in which the winding wires are commonly connected to the input and output terminals, and in a differential mode, in which the winding wires are differentially connected to the input and output terminals, and calculating impedance parameters in a mixed mode, in which transfer impedance components for the shaft ends in the common mode and the differential mode are mixed, using the extracted input impedance parameters and conversion parameters.
摘要:
A temperature calculation system includes a yoke disposed along an inner circumference, first and second teeth arranged on an inner circumference surface of the yoke while having an interval set in a circumference direction, and a coil member formed between the first and second teeth and including a plurality of coils, forms a thermal equivalent circuit of the coil member, and calculates a temperature of a set portion of the coil member. An outer circumference surface temperature and an inner circumference surface temperature of the coil member are calculated by using radial conduction resistance using a temperature of an inner one side of the coil member. An average temperature of the coil member is calculated by using compensation resistance from the temperature of the inner one side of the coil member, thermal capacity of the coil member, and a heating amount of the coils formed in the coil member.
摘要:
A temperature calculation system for a motor uses a thermal equivalent circuit wherein a yoke is disposed to be fixed onto an inner circumferential surface of a housing of the motor, a coolant chamber in which a coolant flows is formed in a circumferential direction in the housing, and the thermal equivalent circuit including thermal resistance coefficients and temperatures is used. An endothermic amount of the coolant flowing in the coolant chamber of the housing is calculated by using an average temperature of the housing and a preset equation.