摘要:
Disclosed are a multilayer composite hollow fiber comprising at least one nonporous separating membrane layer (A) performing a separating function and two or more porous layers (B) performing a reinforcing function, the layer (A) and the layers (B) being alternately laminated so as to give a structure having internal and external surfaces formed by the porous layers (B), as well as a method of making such a hollow fiber.In this multilayer composite hollow fiber, the separating membrane can be formed as an ultrathin, homogeneous membrane. Moreover, the separating membrane is not liable to get damaged owing to the unique structure of the hollow fiber. Furthermore, such hollow fibers can be readily and stably produced on an industrial scale.
摘要:
A wiper control device for a vehicle capable of accurately stopping wiper blades always at the lowermost position of a wiping range regardless of the rotating speed of a wiper motor. The wiper control device automatically stops the wiper motor at the lowermost position of the wiper blades with a control circuit which obtains a sliding angle corresponding to the rotating speed of the wiper motor from the rotating speed of the motor and controls to flow an electric current continuously in the motor during the time while the motor reaches a rotating position even after the motor is interrupted by selecting the cam contact position with respect to the annular electrode. Thus, this wiper control device can eliminate to disturb the visual field of a driver with the wiper blades.
摘要:
A vacuum degassing apparatus having a throughput of at least 200 tons/day without causing problems such as a stagnation of molten glass flow in the molten glass flow path, an increment of flow rate of the molten glass flow in a local area, an excessive increment of pressure loss of the molten glass flow.A vacuum degassing apparatus comprises a vacuum degassing vessel, and an uprising pipe and a downfalling pipe which are connected with the vacuum degassing vessel, wherein the vacuum degassing vessel includes a wide portion for providing a molten glass flow path, and in the wide portion, the proportion W1/L1 of the breadth of molten glass flow path W1 to the length of molten glass flow path L1 is at least 0.2 and that in the vacuum degassing vessel, the breadth of molten glass flow path W2 of the portion connected with the uprising pipe and the breadth of molten glass flow path W3 of the portion connected with the downfalling pipe are narrower than the breadth of molten glass flow path W1 in the wide portion, and the position of the bottom of molten glass flow path of the portion connected with the uprising pipe and the position of the bottom of molten glass flow path of the portion connected with the downfalling pipe are lower than the position of the bottom of molten glass flow path of the wide portion.
摘要:
A vacuum degassing apparatus for molten glass is comprised of an uprising pipe, a vacuum degassing vessel, a downfalling pipe, an upstream side pit that supplies molten glass to the uprising pipe, and a downstream side pit that receives molten glass from the downfalling pipe. The vacuum degassing apparatus for molten glass is further comprised of a separating mechanism that separates a part of molten glass moving from the downfalling pipe to the downstream side pit, and a returning pipe that returns separated molten glass to the upstream side pit.
摘要:
There is provided a method for electrically energizing and heating a platinum or platinum-alloy composite tube structure having a structure including a first main tube, a second main tube, and a branch tube connecting the first main tube and the second main tube, which prevents a local part of the branch tube from being electrically energized and heated in an excessive or insufficient manner.There is provided a method for electrically energizing and heating a platinum or platinum-alloy composite tube structure having a structure including a first main tube, a second main tube, and a branch tube connecting the first main tube and the second main tube, the method comprising dividing an energizing path for the branch tube into a first energizing path from the first main tube to the branch tube and a second energizing path from the branch tube to the second main tube; and performing energization control for the first energizing path and energization control for the second energizing path independently of each other.
摘要:
In a refrigerant cycle device for a vehicle air conditioner, a refrigerant flow switching device is configured to switch one of a cooling mode, a first heating mode and a second heating mode. In the first heating mode, refrigerant discharged from a compressor flows through a radiator, a heating decompression device and an exterior heat exchanger in this order, and the refrigerant flowing out of the exterior heat exchanger is introduced to a refrigerant suction side of the compressor while bypassing an evaporator. In contrast, in the second heating mode, the refrigerant discharged from the compressor flows into the radiator, and the refrigerant flowing out of the radiator is introduced to the refrigerant suction side of the compressor while bypassing both the exterior heat exchanger and the evaporator, so that the refrigerant radiates heat at the radiator.
摘要:
The present invention provides a vacuum degassing apparatus and a vacuum degassing method for molten glass, which can suppress generation of bubbles on an interface between molten glass and a wall face of a conduit for molten glass such as a vacuum degassing vessel, an uprising pipe or a downfalling pipe that constitute a vacuum degassing apparatus, or influence of lowering of vacuum degassing effect due to rise of the level of molten glass in the vacuum degassing vessel, and which can stably exhibit the effect of vacuum degassing.A vacuum degassing apparatus for molten glass, comprising an uprising pipe, a vacuum degassing vessel, a downfalling pipe, an upstream side pit for supplying molten glass to the uprising pipe, and a downstream side pit for receiving molten glass from the downfalling pipe, wherein the vacuum degassing apparatus for molten glass further comprises a separating mechanism for separating a part of molten glass moving from the downfalling pipe to the downstream side pit, and a returning pipe for returning molten glass separated by the separating mechanism to the upstream side pit.
摘要:
To provide a glass production process capable of reducing bubbles remaining in glass after production, substantially without a refiner.A glass production process, characterized in that glass to be produced is soda lime glass containing water, and the process comprises a step of subjecting molten glass to reduced pressure defoaming in an atmosphere under a pressure of at most the bubble growth starting pressure Peq (kPa) represented by the following formula (1): Peq=−80.8+98.2×[β-OH]+68.0×[SO3]+0.0617×T (1) wherein [β-OH] is the β-OH value (mm−1) of glass, [SO3] is the content (as represented by mass percentage based on oxides) of SO3 in glass, and T is the temperature (° C.) of the molten glass.
摘要:
Disclosed are heat-resisting porous membranes or hydrophilized heat-resisting porous membranes comprising a polyolefin, especially a polyethylene or a polypropylene membrane having a crosslinked polymer held thereon, the crosslinked polymer being composed principally of (a) a polymerizable monomer containing one acid anhydride group or two esterified carboxyl groups or a monomer having at least one carboxylic group and (b) divinylbenzene, or of (a), (b) and further (c) styrene or a derivative thereof, or of (b) and (c). These membranes are prepared by thermally polymerizing some of monomer components from (a) through (c) held on at least a part of the surface of the porous membranes and optionally by further hydrophilizing the crosslinked polymer. The resulting porous membranes are useful for membrane separation requiring steam sterilization and for membrane separation of water of a high temperature.
摘要:
The present invention discloses a hydrophilized porous polyolefin membrane with a polymer of a monomer, which has an HLB value of 2-20, held on at least a part of the pore walls of a porous polyolefin membrane as well as its production process. This hydrophilized porous polyolefin membrane has long-lasting hydrophilicity and good mechanical strength.