Highly oriented expanded polytetrafluoroethylene with superior stiffness

    公开(公告)号:US12083484B2

    公开(公告)日:2024-09-10

    申请号:US17596500

    申请日:2020-06-09

    摘要: Self-supporting uniaxially expanded polytetrafluoroethylene (ePTFE) membranes that have high intrinsic strength, a high matrix modulus, and a high crystallinity index are provided. In some embodiments, the ePTFE membrane is stretched in the machine direction. Uniaxially oriented ePTFE membranes have a matrix tensile strength at least about 1000 MPa in the machine direction, a matrix modulus at least about 100 GPa ambient temperature (i. e., about 20° C.), and a crystallinity index of at least about 94%. In some embodiments, the ePTFE membrane has a tenacity greater than or equal to about 5 gf/d and a denier less than or equal to about 750 g/9000 m. In addition, the uniaxially oriented ePTFE membranes have a orientation of at least about 0.98. Also, the fibrils in the ePTFE membranes have a nearly perfect parallel alignment. The ePTFE membrane may be used to form composites, laminates, fibers, tapes, sheets, tubes, or other three-dimensional objects.

    Method for preparing block copolymer hollow fiber membrane by melt spinning-stretching and selective swelling

    公开(公告)号:US11766640B2

    公开(公告)日:2023-09-26

    申请号:US18001092

    申请日:2022-03-23

    摘要: The disclosure provides a method for preparing a hollow fiber membrane by melt spinning-stretching and selective swelling, including: preparing a nascent hollow fiber by melt spinning in an inert gas protective atmosphere by using an amphiphilic block copolymer as a film forming material, and stretching the nascent hollow fiber in the cooling process, a stretch rate being controlled at 200-540 mm/min, and a stretch ratio being controlled at 150-600%; immersing the obtained hollow fiber in a swelling solvent, and treating the hollow fiber in a water bath at 65° C. for 1 h; and then transferring the hollow fiber into a long-chain alkane solvent, treating the hollow fiber at the same temperature for 1-12 h, and after the completion of the treatment, immediately taking out the hollow fiber and drying the hollow fiber to obtain the hollow fiber membrane with a bicontinuous porous structure. By combining the melt spinning-stretching and the selective swelling, the method of the disclosure can synchronously and continuously improve the permeability and selectivity of the hollow fiber membrane. The treatment in the long-chain alkane solvent can make the polar chain excessively enriched on the surface of the membrane migrate inward, thereby improving the performance of the hollow fiber membrane.

    METHOD FOR PREPARING BLOCK COPOLYMER HOLLOW FIBER MEMBRANE BY MELT SPINNING-STRETCHING AND SELECTIVE SWELLING

    公开(公告)号:US20230191336A1

    公开(公告)日:2023-06-22

    申请号:US18001092

    申请日:2022-03-23

    摘要: The disclosure provides a method for preparing a hollow fiber membrane by melt spinning-stretching and selective swelling, including: preparing a nascent hollow fiber by melt spinning in an inert gas protective atmosphere by using an amphiphilic block copolymer as a film forming material, and stretching the nascent hollow fiber in the cooling process, a stretch rate being controlled at 200-540 mm/min, and a stretch ratio being controlled at 150-600%; immersing the obtained hollow fiber in a swelling solvent, and treating the hollow fiber in a water bath at 65° C. for 1 h; and then transferring the hollow fiber into a long-chain alkane solvent, treating the hollow fiber at the same temperature for 1-12 h, and after the completion of the treatment, immediately taking out the hollow fiber and drying the hollow fiber to obtain the hollow fiber membrane with a bicontinuous porous structure. By combining the melt spinning-stretching and the selective swelling, the method of the disclosure can synchronously and continuously improve the permeability and selectivity of the hollow fiber membrane. The treatment in the long-chain alkane solvent can make the polar chain excessively enriched on the surface of the membrane migrate inward, thereby improving the performance of the hollow fiber membrane.