摘要:
A structure having an optical element thereon has a portion of the structure extending beyond a region having the optical element in at least one direction. The structure may include an active optical element, with the different dimensions of the substrates forming the structure allowing access for the electrical interconnections for the active optical elements. Different dicing techniques may be used to realize the uneven structures.
摘要:
An optical assembly includes a first transparent substrate having first and second surfaces, a second transparent substrate having substantially parallel third and fourth surfaces, a reflective portion on the second transparent substrate, a plurality of filters between the first substrate and the reflective portion, the plurality of filters filtering light beams incident thereon, the plurality of filters and the reflective portion forming a bounce cavity within the second transparent substrate, a collimating lens for collimating light beams to be input to the bounce cavity, a tilt mechanism for introducing tilt to light beams input to the bounce cavity; an input port receiving light beams and an output port transmitting light beams. The tilt mechanism may be between the first and second substrate.
摘要:
A camera system may include an optics stack including first and second substrates secured together in a stacking direction, one of the first and seconds substrates including an optical element, a detector on a sensor substrate, and a feature reducing an amount of light entering at an angle greater than a field of view of the camera system from reaching the detector, the feature being on another of the first and second substrates.
摘要:
A thick wafer is diced by partially dicing a first side to form a first dice, flipping the wafer so that the first side is now in contact with a dicing tape, and dicing a second side. The dicing of the second side may be achieved by aligning a dicing tool to the first dice and/or alignment marks on the wafer. The thick wafer may be a composite wafer including two or more wafers bonded together. These two wafers may be different thicknesses and/or different materials.
摘要:
Arrays of non-rod shaped optical elements may be integrated with fiber arrays arranged in a positioning structure. The use of non-rod shaped optical elements allow the elements to be lithographically created already accurately aligned relative to one another. This also allows for simultaneous alignment of the array of optical elements with the array of fibers. The arrays may be one or two dimensional. The support structure for the fibers may be any desired structure. The fiber endfaces may be angled. The array of optical elements may include more than one substrate bonded together. Passive alignment features, including visual alignment marks and/or mechanical mating features, may be provided on
摘要:
An optical subassembly includes an opto-electronic device, an optics block and a spacer, separate from the optics block and providing spacing between the opto-electronic device and the optics block. The opto-electronic device, the optics block and the spacer are aligned and bonded together. This subassembly is particularly useful when coupling light between the opto-electronic device and a fiber. The optical subassembly may also include an opto-electronic device, an optics block and a sealing structure surrounding the opto-electronic device. The opto-electronic device, the optics block and the sealing structure are aligned and bonded together.
摘要:
An optical interconnect comprises a metallized optical fiber electrostatically bonded to a thin film of an alkali-containing glass which is itself bonded to a planar surface of a semiconductive or conductive substrate. Another optical interconnect comprises an optical fiber having a thin film of an alkali-containing glass deposited thereon, wherein the fiber is electrostatically bonded to a planar surface of a semiconductive or conductive substrate. A process of bonding an optical fiber to a semiconductive or conductive substrate includes contacting the fiber with the substrate, applying a DC potential to the fiber-substrate combination, slowly heating the combination to a maximum temperature between 180.degree.-500.degree. C., maintaining the combination at the maximum temperature for a few minutes, cooling the combination to room temperature, and removing the DC potential.
摘要:
A waveguide to waveguide monitor includes an optics block between the two waveguides. The optics block couples light between the two waveguides and includes at least two parallel surfaces. The monitor also has an optical tap which creates a monitor beam. The optics block may be flush with the endfaces of the waveguides, even if the endfaces are angled. At least two optical elements needed to couple the light between the two optical waveguides and direct the monitor beam on a detector are on the at least two parallel surfaces of the optics block and any surfaces secured thereto.
摘要:
An interface system includes separate optical and mechanical interfaces between opto-electronic devices and fibers. This allows each of these components to be optimized for there particular function. This also allows two surfaces to be provided for the optical interface, allowing the opto-electronic elements to be spaced further apart than the fibers. The interface system can be integrated together, used in conjunction with a conventional fiber housing, and can be surface mounted with an electrical interface.
摘要:
A power monitor for a light emitter uses an absorptive material placed in the path of the application beam. The absorptive has a measurable characteristics thereof altered by an intensity of the light beam, the absorptive material being thin enough to allow a portion of the light beam sufficient for a desired application to be passed to the desired application. Preferably, an anti-reflective coating is placed between the absorptive material and the light emitting device. The absorptive material may be formed directly on the light emitting device or may be formed on or integrated with a spacer.