Abstract:
A fiber link detection method is implemented by a first network device of an optical communications network. The fiber link detection method includes obtaining a forward delay value indicating a forward delay of transmitting a first Precision Time Protocol (PTP) packet by a second interface of a second network device to a first interface of the first network device over a fiber link. A reverse delay value indicating a reverse delay of transmitting a second PTP packet by the first interface to the second interface over the fiber link is obtained, and a determination is made, based on the forward delay value, the reverse delay value, and a first threshold, that the fiber link comprises a third network device, where the first network device and the second network device support a PTP, and where the third network device does not support the PTP.
Abstract:
Embodiments disclose an OTDR implementation apparatus. The apparatus includes M transmitters, configured to transmit M optical waves of different wavelengths, where M is greater than or equal to 2. The apparatus also includes a processor, configured to control an OTDR detection circuit to load an OTDR detection signal onto a first transmitter, where the first transmitter is configured to only load the OTDR detection signal, and the other M−1 transmitters are configured to transmit a downlink optical signal, where the downlink optical signal is a high frequency signal. The apparatus also includes the OTDR detection circuit, configured to generate the OTDR detection signal, where the OTDR detection signal is a low frequency signal; and M receivers, where a first receiver is connected to an egress link of the M transmitters, and the other M−1 receivers are connected after a demultiplexer, and are configured to receive multiple uplink signals.
Abstract:
A clock synchronization method, a receiver, a transmitter, and a clock synchronization system, where the method includes obtaining a common reference clock signal, determining Bt according to the common reference clock signal and Mrd(t−1), where B t = mod [ ∑ n = 0 t - 1 Mr d ( n ) , 2 p ] , determining that Mrd(t−1) is a target Mrd when Ct obtained by means of calculation according to Mrd(t−1) is less than or equal to a threshold, where Ct=Bt−At, At is included in a residual time stamp (RTS) packet received by a receiver last time from the transmitter, and A t = mod [ ∑ n = 0 t M d ( n ) , 2 p ] , performing frequency division on the common reference clock signal using the target Mrd as a frequency dividing coefficient to obtain a first clock signal, and performing frequency multiplication processing on the first clock signal to obtain a service clock signal. Hence, random phase offset may be avoided.
Abstract:
The present invention provides an optical module and an optical network system. A first chip is arranged on a lower cover plate, an upper cladding, which is close to a first PD, of the first chip is covered by a first upper cover plate; a first dividing groove divides the first chip into two parts, and a WDM and a light blocking material are arranged inside the first dividing groove, so as to block stray light transmitted inside the upper cladding, a sandwich layer, a lower cladding, and a base of the first chip; and a light blocking material is arranged on a side of the first upper cover plate facing the first LD, so as to block stray light transmitted on a surface of the first chip, thereby blocking the stray light that enters the first PD, and significantly reducing crosstalk of the optical module.
Abstract:
A method and an apparatus for determining an Ethernet clock source are provided. The method includes: receiving a first clock information packet sent by a first clock device, where the first clock information packet is used to indicate clock source information of the first clock device; based on clock source device identifiers and at least one type of information of the following information: clock source device quality grades, clock source information transfer hop counts, clock source information receiving port numbers, and clock source information sending device identifiers, determining a target clock source; and determining the target clock source as a clock source of the second clock device. In the method and the apparatus of the application, a preferable clock source can be simply, effectively, and reliably determined, a clock can be prevented from forming a loop, and clock deployment can be simplified.
Abstract:
The present invention provides an optical module and an optical network system. A first chip is arranged on a lower cover plate, an upper cladding, which is close to a first PD, of the first chip is covered by a first upper cover plate; a first dividing groove divides the first chip into two parts, and a WDM and a light blocking material are arranged inside the first dividing groove, so as to block stray light transmitted inside the upper cladding, a sandwich layer, a lower cladding, and a base of the first chip; and a light blocking material is arranged on a side of the first upper cover plate facing the first LD, so as to block stray light transmitted on a surface of the first chip, thereby blocking the stray light that enters the first PD, and significantly reducing crosstalk of the optical module.