Abstract:
An electronically steerable antenna with dual polarization is provided, as well as a method for steering such an antenna. An example antenna may include a driven patch element having dual polarity for radiating or receiving a first beam with a first polarization and radiating or receiving a second beam with a second polarization. The antenna includes a parasitic patch element separated from the driven patch element and in a parasitic coupling arrangement to the driven patch element, as well as first and second tuning elements linked to the parasitic patch element to control first and second terminating impedances of the parasitic patch element, respectively. The first terminating impedance at least partly determines a direction of the first beam, and the second terminating impedance at least partly determines a direction of the second beam.
Abstract:
An embodiment millimeter wave diplexer includes a substrate integrated waveguide (SIW) high pass filter (HPF), a microstrip line low pass filter (LPF), and a T-junction. The SIW HPF is coupled to a first port, and the microstrip line LPF is coupled to a second port. The SIW HPF is operable in a first frequency band, and the microstrip line LPF is operable in a second frequency band. The T-junction is coupled between the SIW HPF and the microstrip line LPF. The T-junction is also coupled to a common port.
Abstract:
An antenna element for signals with three polarizations and the method for operating such an antenna element are disclosed. In an embodiment the antenna element includes a first dipole element configured to emit or receive electromagnetic signals in a first polarization direction, a second dipole element configured to emit or receive electromagnetic signals in a second polarization direction, a monopole element configured to emit or receive electromagnetic signals in a third polarization direction and an antenna reflector element, wherein the first dipole element, the second dipole element and the monopole element are collocated on the antenna reflector element, and wherein the first polarization direction, the second polarization direction and the third polarization direction are all different.
Abstract:
A low complexity/cost beamsteering antenna includes a central line feed affixed to a radial waveguide structure, radiating elements positioned along the circumference of the radial waveguide structure, and a plurality of active elements interspersed along the surface of the radial waveguide structure between the central line feed and the radiating elements. The active elements may comprise PIN diodes or microelectromechanical system (MEMS) components, and may be selectively activated/deactivated by DC switches in order to direct the propagation of an RF signal over the radial waveguide structure in a manner similar to a power divider. As a result, the RF signal may be funneled to selected radiating elements, thereby effectively directionally aiming the main lobe of the emitted radiation pattern to beamsteer the wireless transmission.
Abstract:
The disclosed structures and methods are directed to antenna systems configured to transmit and receive a wireless signal in and from different directions. A switchable lens antenna has excitation ports radiating radio-frequency (RF) wave into a parallel-plate waveguide structure, and a frequency selective structure (FSS). The antenna presented herein is configured to operate in two modes depending on an initial steering angle of the RF wave propagating in the parallel-plate waveguide structure. When the initial steering angle is about or less than a threshold steering angle, FSS is OFF due to its stubs being electrically disconnected from the parallel-plate waveguide structure. When the initial steering angle is higher than the threshold, FSS is ON with stubs being electrically connected to the parallel-plate waveguide structure. When ON, FSS provides phase variance to the RF wave propagating in the parallel-plate waveguide structure and increases steering angle of the RF wave.
Abstract:
A multi-band single feed dielectric resonator antenna (DRA) and DRA array are provided. The DRA is made of a dielectric material having a first and second antenna regions wherein the second antenna region has a different dielectric constant than the first antenna region. The dielectric material is supported by a feeding substrate. The feeding substrate has a top surface ground plane having a slot positioned below the first antenna region of the dielectric material and a microstrip feeding line on the bottom surface in alignment with the slot on the top surface ground plane.
Abstract:
An electronically steerable antenna with dual polarization is provided, as well as a method for steering such an antenna. An example antenna may include a driven patch element having dual polarity for radiating or receiving a first beam with a first polarization and radiating or receiving a second beam with a second polarization. The antenna includes a parasitic patch element separated from the driven patch element and in a parasitic coupling arrangement to the driven patch element, as well as first and second tuning elements linked to the parasitic patch element to control first and second terminating impedances of the parasitic patch element, respectively. The first terminating impedance at least partly determines a direction of the first beam, and the second terminating impedance at least partly determines a direction of the second beam.
Abstract:
Embodiments are provided for an agile antenna that beamsteers radio frequency (RF) signals by selectively activating/de-activating tunable elements on radial-waveguides using direct current (DC) switches. The antenna comprises two parallel radial waveguide structures, each comprising a first radial plate, a second radial plate in parallel with the first radial plate, and conductive elements positioned vertically and distributed radially between the two plates. The radial waveguide structure further includes a plurality of quarter RF chokes which are connected to the conductive elements via respective micro-strips and tunable elements. The two parallel radial plates are separated by a height determined according to a desired transmission frequency range for RF signals, a length of the micro-strips, a diameter of the conductive elements, and a clearance space around each one of the conductive elements.
Abstract:
An embodiment millimeter wave diplexer includes a substrate integrated waveguide (SIW) high pass filter (HPF), a microstrip line low pass filter (LPF), and a T-junction. The SIW HPF is coupled to a first port, and the microstrip line LPF is coupled to a second port. The SIW HPF is operable in a first frequency band, and the microstrip line LPF is operable in a second frequency band. The T-junction is coupled between the SIW HPF and the microstrip line LPF. The T-junction is also coupled to a common port.