Abstract:
Increased resource utilization efficiency can be improved by modeling path costs during admission and path-selection. Specifically, path costs for candidate paths are modeled based on load characteristics (e.g., current load, load variation, etc.) of links in the candidate paths. Path costs can represent any quantifiable cost or liability associated with transporting a service flow over the corresponding path. For example, path costs can correspond to a probability that at least one link in the path will experience an outage when transporting the service flow, a price charged by a network operator (NTO) for transporting the traffic flow over the candidate path, or a total network cost for transporting the flow over a candidate path. The candidate path having the lowest path cost is selected to transport a service flow.
Abstract:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
Abstract:
A method for configuring a first base station within a cluster in a communications system having a plurality of cluster includes optimizing an operating parameter of the first base station in accordance with first utility function results from a first utility function associated with the first base station and second utility function results from a second utility function associated with a second base station within the cluster, the first utility function results and the second utility function results according to multiple settings for the operating parameter of the first base station, a first initialized setting of the operating parameter for the second base station, and a second initialized setting of the operating parameter for an external base station outside the cluster. The method also includes sharing the optimized operating parameter with the external base station.
Abstract:
Increased resource utilization efficiency can be improved by modeling path costs during admission and path-selection. Specifically, path costs for candidate paths are modeled based on load characteristics (e.g., current load, load variation, etc.) of links in the candidate paths. Path costs can represent any quantifiable cost or liability associated with transporting a service flow over the corresponding path. For example, path costs can correspond to a probability that at least one link in the path will experience an outage when transporting the service flow, a price charged by a network operator (NTO) for transporting the traffic flow over the candidate path, or a total network cost for transporting the flow over a candidate path. The candidate path having the lowest path cost is selected to transport a service flow.
Abstract:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
Abstract:
Interference costs on virtual radio interfaces can be modeled as a function of loading in a wireless network to estimate changes in spectral efficiency and/or resource availability that would result from a provisioning decision. In one example, this modeling is achieved through cost functions that are developed from historical and/or simulated resource cost data corresponding to the wireless network. The cost data may include interference data, spectral efficiency data, and/or loading data for various links over a common period of time (e.g., a month, a year, etc.), and may be analyzed and/or consolidated to obtain correlations between interference costs and loading on the various links in the network. As an example, a cost function may specify an interference cost on one virtual link as a function of loading on one or more neighboring virtual links.