Abstract:
A plasma display panel capable of being fast driven with low voltage by reducing a distance between an address electrode and a Y electrode. The plasma display panel includes a pair of substrates, barrier ribs, discharge electrodes, and an address electrode. The substrates are arranged at a predetermined interval to face each other and form a plurality of discharge spaces between facing surfaces of the substrates. The barrier ribs are arranged between the substrates to partition a space between the substrates into a plurality of discharge cells each having a horizontal cross-section of a circle or an oval. The discharge electrodes are arranged at predetermined intervals between the substrates. The address electrode is arranged a predetermined distance apart from the discharge electrodes in a substrate direction.
Abstract:
A plasma display panel. The plasma display panel includes a first substrate made of a transparent material, a second substrate opposite to the first substrate, a first partition wall being located between the first substrate and the second substrate, defining discharge cells together with the first and second substrates, and being made of a dielectric material, upper discharge electrodes being located in the first partition wall and surrounding the discharge cells, lower discharge electrodes being located in the first partition wall to surround the discharge cells and separated from the upper discharge electrodes by a predetermined gap, protrusive electrodes being located in the first partition wall between the upper discharge electrodes and the lower discharge electrodes, connected to one of the upper discharge electrodes and the lower discharge electrodes, and separated from the other discharge electrodes by a predetermined gap, and a phosphor layer arranged in the discharge cells.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas that pass through centers of adjacent discharge cells and discharge cell ordinates that pass through centers of adjacent discharge cells, the non-discharge regions having a width that is at least as large as a width of an end of barrier ribs. Also, a transverse barrier rib is formed extending between each pair of adjacent rows of discharge cells.
Abstract:
A plasma display panel with first and second substrates facing each other, and address electrodes formed on the second substrate. A partition wall is disposed between the first and the second substrates to separately partition a plurality of discharge cells. A phosphor layer is formed within each discharge cell. Discharge sustain electrodes are formed on the first substrate. A thickness of the phosphor layer is designed so that the resulting internal space has a shape corresponding to the diffusion shape of the plasma discharge generated within the discharge cell to optimize brightness of the image and to maximize light emission efficiency.
Abstract:
A plasma display panel reduces noise caused by the formation of minute gaps between the first substrate and the second substrate. The plasma display panel includes a first substrate and a second substrate opposing one another with a predetermined gap therebetween, and a sealant formed on opposing surfaces of the first substrate and the second substrate. The sealant is formed around outer circumferential areas of the first substrate and the second substrate to seal the first substrate and the second substrate together. The sealant is formed of regions having a first width of substantially the same size and of regions having a second width greater than the size of the first width.
Abstract:
A plasma display panel includes first and second substrates opposing one another. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first and second substrates defining discharge cells and non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates passing through centers of the discharge cells. Further, the discharge cells are formed such that ends thereof increasingly decrease in width as a distance from centers of the discharge cells is increased. The discharge sustain electrodes include bus electrodes that extend perpendicular to the address electrodes and outside areas of the discharge cells but across areas of the non-discharge regions, and protrusion electrodes formed extending from each of the bus electrodes.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas that pass through centers of adjacent discharge cells and discharge cell ordinates that pass through centers of adjacent discharge cells, the non-discharge regions having a width that is at least as large as a width of an end of barrier ribs. Also, a transverse barrier rib is formed extending between each pair of adjacent rows of discharge cells.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates that pass through centers of each of the discharge cells. Further, each of the discharge cells is formed such that ends thereof increasingly decrease in width along a direction the discharge sustain electrodes are formed as a distance from a center of the discharge cells is increased along a direction the address electrodes are formed.
Abstract:
A plasma display panel with first and second substrates facing each other, and address electrodes formed on the second substrate. A partition wall is disposed between the first and the second substrates to separately partition a plurality of discharge cells. A phosphor layer is formed within each discharge cell. Discharge sustain electrodes are formed on the first substrate. A thickness of the phosphor layer is designed so that the resulting internal space has a shape corresponding to the diffusion shape of the plasma discharge generated within the discharge cell to optimize brightness of the image and to maximize light emission efficiency.
Abstract:
A plasma display panel that improves luminance efficiency by increasing a plasma density by forming a magnetic field within a discharge space includes: a front substrate, a rear substrate, barrier ribs, upper sidewalls, address electrodes, discharge electrodes, a phosphor layer, and magnets. The front and rear substrates are arranged at a predetermined distance apart to face each other. The barrier ribs are arranged between the front and rear substrates to partition a space formed between the front and rear substrates into a plurality of discharge spaces. The upper sidewalls are arranged between the barrier ribs and the front substrate to define the discharge spaces in cooperation with the barrier ribs. The address electrodes extend in one direction over the rear substrate. The discharge electrodes are arranged within the upper sidewalls, the discharge electrodes arranged in parallel at a predetermined distance apart in a direction from the front substrate to the rear substrate to surround the discharge spaces and to extend across the address electrodes. The phosphor layer is arranged on at least one surface of each of the discharge spaces. The magnets are arranged in the upper sidewalls at a predetermined distance apart in a direction from the discharge electrodes to the discharge spaces.