Abstract:
A product having at least one plasma lamp that includes plates that are approximately parallel, with at least one array of microcavities formed in a surface of at least one plate. When desirable, the plates are separated a fixed distance by spacers with at least one spacer being placed near the plate's edge to form a hermetic seal therewith. A gas makes contact with the microcavity array. Electrodes capable of delivering a time-varying voltage are located such that the application of the time-varying voltage interacts with the gas to form a glow discharge plasma in the microcavities and the fixed volume between the plates. The glow discharge plasma efficiently and uniformly emits radiation that is predominantly in the UV/VUV spectral range with at least a portion of the radiation being emitted from the plasma lamp.
Abstract:
A plasma display device and a method of driving a plasma display panel are provided for improving the contrast without degrading the image quality. Each of display cells formed on the plasma display panel has a magnesium oxide layer containing magnesium oxide crystals. The magnesium oxide crystals are excited by an electron beam irradiated thereto and emit cathode luminescence light having a peak in a wavelength range of 200 to 300 nm. In order to trigger a rest discharge in all the display cells, each row electrode pair of the plasma display panel is applied with a reset pulse which has a particular pulse waveform. The voltage value of this reset pulse slowly changes over time to reach a peak voltage value.
Abstract:
A material for manufacturing a display panel substrate assembly having at least an electrode and a dielectric layer covering the electrode on a glass substrate, the material comprising an electrode material containing an electrically conductive particle and a binder resin having a thermal degradation temperature T1, and a dielectric material containing a binder resin having a thermal degradation temperature T2 and a low melting point glass having a glass softening point Tb, wherein the thermal degradation temperatures T1 and T2, and the glass softening point Tb have a relationship of T2
Abstract:
An inorganic particle-containing composition comprising: (A) inorganic particles; (B) a binder resin; and (C) at least one plasticizer selected from the group consisting of compounds represented by the following formula (1): R1O—R2mOOC—(CH2nCOOR3—OmR4 (1) wherein R1 and R4are the same or different alkyl groups having 1 to 30 carbon atoms or alkenyl groups, R2 and R3 are the same or different alkylene groups having 1 to 30 carbon atoms or alkenylene groups, m is an integer of 0 to 5, and n is an integer of 1 to 10, and compounds represented by the following formula (2): wherein R5 is an alkyl group having 1 to 30 carbon atoms or alkenyl group. A transfer film and a plasma display panel production process using the composition are also described.
Abstract:
A driving method of the present invention is adapted to a plasma display panel which includes first and second electrodes formed on a substrate, third electrodes formed in a direction intersecting the first and second electrodes, and a dielectric layer covering the first and second electrodes. The driving method includes the steps of generating an address discharge between the first and the third electrode to select a predetermined cell and sustain discharges between the first and the second electrode to produce light for display, and controlling the plasma display panel such that the discharge intensity of a sustain discharge in which the second electrode serves as the anode is smaller than the discharge intensity of a sustain discharge in which the first electrode serves as the anode.
Abstract:
A method for manufacturing a plasma display panel, according to the present invention includes the steps of forming a transparent conductive film in at least a display region on a glass substrate, partly forming bus electrodes in parallel on the transparent conductive film, cutting the transparent conductive film and the glass substrate by a sandblasting method into a predetermined configuration to form parallel transparent electrodes of a predetermined shape and to form recesses in the glass substrate between the transparent electrodes, forming a dielectric layer to cover the bus electrodes and the transparent electrodes, and forming a protective layer to cover the dielectric layer.
Abstract:
There is provided a plasma display panel having an improved dielectric layer and a method of manufacturing the plasma display panel. The method of manufacturing the plasma display panel comprises the steps of: forming electrodes in a direction on a substrate; cleaning the substrate on which the electrodes are formed; coating the substrate with dielectric paste; drying the dielectric paste; and firing the dielectric paste and forming a dielectric layer having a single layer. Accordingly, it is possible to form a dielectric layer for a plasma display panel having reduced bubbles and an excellent transmittance.
Abstract:
In a plasma display panel containing a front plate having an dielectric glass layer for covering display electrodes formed on a transparent substrate, the glass composition forming the dielectric layer contains titanium. The glass composition should preferably contain 0.9-6.7 wt % of TiO2 on the basis of the weight of an oxide, further preferably, contain 2.6-5.5 wt % of TiO2 on the basis of the weight of an oxide.
Abstract:
A composition of a dielectric for a plasma display panel can prevent colloid generation and yellowing. To this end, the composition of a dielectric for the plasma display panel is composed of transition-metal oxide such as cobalt oxide (CoO) or copper oxide (CuO).
Abstract:
A plasma display device disclosed herein is capable of enhancing the contrast of external light, facilitating application of phosphor paste on the bottom of each space surrounded by lattice-like barrier ribs, and reducing a variation in the amount of the phosphor paste applied as much as possible. The lattice-like barrier ribs include lateral ribs extending along a first direction while being nearly in parallel to each other, and vertical ribs extending along a second direction different from the first direction while being nearly in parallel to each other. Each of the lateral ribs is composed of two or more rows of rib elements. Notches for communicating spaces surrounded by the vertical ribs and the lateral ribs to each other in the first direction and/or the second direction are formed at least in portions of the vertical ribs and/or the lateral ribs.