摘要:
Disclosed is a melt-blown fiber web with improved concentration force and elasticity, whereby a melt-blown fabric is cut and sealed at predetermined intervals using knives having arbitrary patterns so that concentration force and elasticity of the melt-blown fiber web can be improved without degrading the inherent function of the fiber web. Further disclosed are a method and apparatus for manufacturing the melt-blown fiber web. The melt-blown fiber web includes thermoplastic filaments, wherein cutting portions and sealing portions are arranged on top and bottom surfaces of the fiber web at predetermined intervals along a thickness of the fiber web so that a concentration force and elasticity of the fiber web are improved.
摘要:
The present invention relates to a method for manufacturing a highly heat-resistant sound absorbing and insulating material, more specifically to a method including a beating and mixing step, a web forming step, a web stacking step, a needle punching step, a binder impregnating step and a solvent recovering step.The highly heat-resistant sound absorbing and insulating material manufactured by the method according to the present invention may be installed on a location closest to the noise source of an engine or an exhaust system to reduce radiated noise from the engine or the exhaust system, thereby improving quietness inside a vehicle, and may be applied to a location adjacent to a metal part which is at a temperature of 200° C. or greater to exert heat-insulating function, thereby protecting nearby plastic and rubber parts.
摘要:
The present invention relates to a method for manufacturing a substantially improved heat-resistant sound absorbing and insulating material. method includes: beating and mixing a fiber material comprising a heat-resistant fiber; forming a web from the beaten and mixed fiber material; stacking the formed web; forming a nonwoven fabric by needle punching as moving a needle up and down through the stacked web; forming a binder-impregnated nonwoven fabric by immersing the nonwoven fabric in a binder solution; and removing a solvent from the binder-impregnated nonwoven fabric.The substantially improved heat-resistant sound absorbing and insulating material manufactured by the method according to the present invention may be installed on a location closest to the noise source of an engine or an exhaust system to reduce radiated noise from the engine or the exhaust system, thereby improving quietness inside a vehicle, and may be applied to a location adjacent to a metal part which is at a temperature of 200° C. or greater to exert heat-insulating function, thereby protecting nearby plastic and rubber parts.
摘要:
The present invention provides a multilayer dash isolation pad having superior formability and sound absorption performance. The multilayer dash isolation pad includes a decoupler and a sound absorption and insulation layer. The decoupler is a soft felt manufactured from urethane foam or octalobal cross-section fiber, and the sound absorption and insulation layer includes a compressed felt manufactured from octalobal cross-section fibers. In particular, the shape factor (a) of the octalobal cross-section fiber is 2.0 to 2.7. Particularly, the multilayer dash isolation pad according to the present invention does not decrease thickness or be contracted upon press molding after pre-heating felt, such that superior formability in components can be obtained and a sound absorption coefficient may be enhanced without increase in the weights and thicknesses of the decoupler and the sound absorption and insulation layer.
摘要:
Disclosed are a sound-absorbing material with improved sound-absorbing performance and a method for manufacturing the sound-absorbing material. The sound-absorbing material may improve sound absorption coefficient and transmission loss by forming large surface area and air layer, so as to induce viscosity loss of incident sound energy, and may provide light-weight design of a sound absorbing part or material since sound-absorbing performance may be substantially improved using reduced amount of fiber. Further, the sound-absorbing material may improve sound-absorbing performance by using binder fiber having rebound resilience, so as to maintain enough strength between fibers and also to maximize viscosity loss of sound energy transmitted to fiber structure.
摘要:
The present invention relates to a method for manufacturing a highly heat-resistant sound absorbing and insulating material, more specifically to a method including a beating and mixing step, a web forming step, a web stacking step, a needle punching step, a binder impregnating step and a solvent recovering step.The highly heat-resistant sound absorbing and insulating material manufactured by the method according to the present invention may be installed on a location closest to the noise source of an engine or an exhaust system to reduce radiated noise from the engine or the exhaust system, thereby improving quietness inside a vehicle, and may be applied to a location adjacent to a metal part which is at a temperature of 200° C. or greater to exert heat-insulating function, thereby protecting nearby plastic and rubber parts.
摘要:
Disclosed is a tufted carpet for a vehicle. The tufted carpet for the vehicle is manufactured by implanting a spun yarn into a base fabric, wherein the spun yarn is formed from a material mixture of about 85 wt % to about 95 wt % polyethylene terephthalate (PET) and about 5 to about 15 wt % polytrimethylene terephthalate (PTT).
摘要:
Disclosed is a convergence sound-absorbing material and a method of fabricating the same, and more particularly, a convergence sound-absorbing material and a method of fabricating the same in which an inexpensive eco-friendly recycled filler composed of polyurethane foam and a recycled thread or waste felt is used as a filler in an intermediate layer of the PET sound-absorbing material to provide remarkably reduced fabrication costs and excellent sound-absorbing performance. In addition the waste felt, which is typically discarded during a process of cutting the sound-absorbing material, is recycled for use in the filler.
摘要:
The present invention relates to a method for predicting physical properties of an amorphous porous material which may predict an acoustic physical property value and an absorption coefficient from parameters of an amorphous porous material, and may estimate the acoustic characteristics with the amorphous porous material which is an amorphous specimen even without separately producing a formalized specimen such as a cylindrical specimen or a flat specimen. Further, the method for predicting physical properties of the amorphous porous material may estimate the acoustic physical properties through the analysis of a three-dimensional pore connection structure, which is a microstructure of an amorphous specimen, even without acoustic impedance, thereby estimating the acoustic physical properties which accurately reflect the characteristics of the actual specimen.
摘要:
Disclosed are, inter alia, a sound absorption and insulation material including a polyester hollow fiber, a polyester low-melting-point composite fiber and a polyester base fiber, a sound absorption and insulation pad for a floor including the same, and a manufacturing method thereof for improving the elasticity and sound absorption and insulation performance of the sound absorption and insulation material. The sound absorption and insulation material is an environmentally friendly material that can reduce discomfort due to the generation of volatile organic compounds (VOCs) and the emission of toxic gases during combustion. Also, the sound absorption and insulation pad including the sound absorption and insulation material can exhibit superior sound absorption performance, sound insulation performance and actual vehicle performance compared to a conventional sound absorption and insulation pad of the same thickness.