摘要:
Disclosed is a melt-blown fiber web with improved concentration force and elasticity, whereby a melt-blown fabric is cut and sealed at predetermined intervals using knives having arbitrary patterns so that concentration force and elasticity of the melt-blown fiber web can be improved without degrading the inherent function of the fiber web. Further disclosed are a method and apparatus for manufacturing the melt-blown fiber web. The melt-blown fiber web includes thermoplastic filaments, wherein cutting portions and sealing portions are arranged on top and bottom surfaces of the fiber web at predetermined intervals along a thickness of the fiber web so that a concentration force and elasticity of the fiber web are improved.
摘要:
Disclosed is a melt-blown fiber web with improved concentration force and elasticity, whereby a melt-blown fabric is cut and sealed at predetermined intervals using knives having arbitrary patterns so that concentration force and elasticity of the melt-blown fiber web can be improved without degrading the inherent function of the fiber web. Further disclosed are a method and apparatus for manufacturing the melt-blown fiber web. The melt-blown fiber web includes thermoplastic filaments, wherein cutting portions and sealing portions are arranged on top and bottom surfaces of the fiber web at predetermined intervals along a thickness of the fiber web so that a concentration force and elasticity of the fiber web are improved.
摘要:
Disclosed is a melt-blown fiber web with improved concentration force and elasticity, whereby a melt-blown fabric is cut and sealed at predetermined intervals using knives having arbitrary patterns so that concentration force and elasticity of the melt-blown fiber web can be improved without degrading the inherent function of the fiber web. Further disclosed are a method and apparatus for manufacturing the melt-blown fiber web. The melt-blown fiber web includes thermoplastic filaments, wherein cutting portions and sealing portions are arranged on top and bottom surfaces of the fiber web at predetermined intervals along a thickness of the fiber web so that a concentration force and elasticity of the fiber web are improved.
摘要:
A composite fiber web having superior heat resistance and sound absorption and including a center layer containing a carbon fiber and a heat-resistant layer, and to a method of manufacturing the same. The method of the present invention can exhibit a fast manufacturing speed through a melt-blowing process that will generate economic benefits. The composite fiber web includes a composite layer and individual layers with various fiber diameters resulting in a superior sound absorption rate. The PET fiber included in the heat-resistant layer of the composite layer is an environmentally friendly material with superior heat resistance due to the inclusion of ultrafine fiber. Also, the composite fiber web has superior strength, conductivity, and electromagnetic shielding and deodorization effects, which allows it to be widely utilized for sound absorption materials and in all application fields thereof.
摘要:
Disclosed are a fiber for a sound-absorbing material for vehicles and a sound-absorbing material for vehicles including the same. The cross-section of the fiber for a sound-absorbing material includes a first end portion, a second end portion spaced apart from the first end portion, and an intermediate portion connected to the first end portion and the second end portion. The intermediate portion includes at least three bent portions. Each of the first end portion and the second end portion has a width larger than the width of the intermediate portion.
摘要:
Disclosed are an undercover for vehicles with high elasticity and rigidity and a method of manufacturing the same. The undercover for vehicles with high elasticity and rigidity may include a needle-punched nonwoven fabric having a multi-layer structure of felt layers including a first PET fiber and a low-melting-point PET fiber, and each of the felt layers may have improved tensile strength and have optimized fiber alignment, to thereby improve the binding between fibers, mechanical rigidity and elasticity, as well as to reduce the weight of components, improve durability and secure harmlessness and inline workability.
摘要:
Disclosed are a fiber for a sound-absorbing material for vehicles and a sound-absorbing material for vehicles including the same. The cross-section of the fiber for a sound-absorbing material includes a first end portion, a second end portion spaced apart from the first end portion, and an intermediate portion connected to the first end portion and the second end portion. The intermediate portion includes at least three bent portions. Each of the first end portion and the second end portion has a width larger than the width of the intermediate portion.
摘要:
Disclosed are an undercover for vehicles with high elasticity and rigidity and a method of manufacturing the same. The undercover for vehicles with high elasticity and rigidity may include a needle-punched nonwoven fabric having a multi-layer structure of felt layers including a first PET fiber and a low-melting-point PET fiber, and each of the felt layers may have improved tensile strength and have optimized fiber alignment, to thereby improve the binding between fibers, mechanical rigidity and elasticity, as well as to reduce the weight of components, improve durability and secure harmlessness and inline workability.
摘要:
The present invention relates to a method for manufacturing a highly heat-resistant sound absorbing and insulating material, more specifically to a method including a beating and mixing step, a web forming step, a web stacking step, a needle punching step, a binder impregnating step and a solvent recovering step.The highly heat-resistant sound absorbing and insulating material manufactured by the method according to the present invention may be installed on a location closest to the noise source of an engine or an exhaust system to reduce radiated noise from the engine or the exhaust system, thereby improving quietness inside a vehicle, and may be applied to a location adjacent to a metal part which is at a temperature of 200° C. or greater to exert heat-insulating function, thereby protecting nearby plastic and rubber parts.