Abstract:
A user equipment (UE) is configured to send a request to use an enhanced power saving mode (ePSM) to a mobility management entity (MME) of a mobile communications network. The UE is configured to receive configuration parameters from the MME including a time length for an idle mode and a time length for a power saving mode. The UE is configured to cycle between the idle mode and the power saving mode based on the power saving mode parameters, wherein the UE is available to receive transmissions during the idle mode and unavailable to receive transmissions during the power saving mode.
Abstract:
A relay device assists in enabling lawful intercept (LI) by reporting, to a LI entity associated with the cellular network, authenticated identities of remote UEs (such as remote UEs connected via proximity services) and identification information that may allow the LI entity to monitor traffic (and/or control statistics related to the traffic) associated with the remote UEs. The authentication of the remote UEs may be performed using a technique that does not require involvement of the cellular network.
Abstract:
Device to device (D2D) communication can be performed with packet data convergence protocol (PDCP) based encapsulation without internet protocol (IP) addressing. The non-IP D2D PDCP-encapsulated communication can further include two forms of secure data transfer. A first non-IP D2D PDCP-encapsulated communication can be a negotiated non-IP D2D PDCP-encapsulated communication. A second non-IP D2D PDCP-encapsulated communication can be a non-negotiated non-IP D2D communication. The non-negotiated non-IP D2D PDCP-encapsulated communication can include a common key management server (KMS) version and a distributed KMS version. The encapsulated communication can be used with various protocols, including a PC5 protocol (such as the PC5 Signaling Protocol) and wireless access in vehicular environments (WAVE) protocols.
Abstract:
Embodiments of the present disclosure describe apparatuses for public safety discovery and communication with a user equipment (UE)-to-UE relay. Various embodiments may include processing circuitry to execute instructions to determine a list of UEs with which an apparatus may communicate using device-to-device (D2D) communication and generate an announcement message that indicates the apparatus can serve as a relay based at least in part on the list. Other embodiments may be described and/or claimed.
Abstract:
Techniques described herein may enable Evolved Packet Core (EPC) devices (e.g., Mobility Management Entities (MMEs), Serving Gateways (SGWs), or Packet Data Network Gateways (PGWs)) to transfer a connection with a User Equipment (UE) from one EPC device to another EPC device without a break in service for the UE. The transfer may occur in response to an EPC device being overloaded, an EPC device being added or removed from a logical group of EPC devices, or in response one EPC device becoming more appropriate for the UE than another EPC device (e.g., due to a change in the geographic location of the UE). EPC devices may be implemented as virtual network functions, and the transfer of the UE may occur while the UE is in an active mode or an idle mode.
Abstract:
Technology for user equipment (UE) operable to establish a new packet data network (PDN) connection during handover is disclosed. The UE can receive a radio resource control (RRC) connection reconfiguration message from a source radio base station during a handover procedure. The RRC connection reconfiguration message can include a request for establishment of the new PDN connection between the UE and a target PDN gateway (PGW). The UE can establish the new PDN connection with the target PGW using one or more parameters included in the RRC connection reconfiguration message. The UE can send, to a target radio base station, an RRC connection reconfiguration complete message during the handover procedure that includes an acknowledgement of the establishment of the new PDN connection.
Abstract:
Device to device (D2D) communication can be performed with packet data convergence protocol (PDCP) based encapsulation without internet protocol (IP) addressing. The non-IP D2D PDCP-encapsulated communication can further include two forms of secure data transfer. A first non-IP D2D PDCP-encapsulated communication can be a negotiated non-IP D2D PDCP-encapsulated communication. A second non-IP D2D PDCP-encapsulated communication can be a non-negotiated non-IP D2D communication. The non-negotiated non-IP D2D PDCP-encapsulated communication can include a common key management server (KMS) version and a distributed KMS version. The encapsulated communication can be used with various protocols, including a PC5 protocol (such as the PC5 Signaling Protocol) and wireless access in vehicular environments (WAVE) protocols.
Abstract:
Technology described herein relates to systems, methods, and computer readable media to implement extended Discontinuous Reception (eDRX) for user equipments (UEs). A Mobility Management Entity (MME) can be aware of the starting time and length of an eDRX cycle of a UE so that the MME can send a paging message for the UE to an evolved Node B (eNB) shortly ahead of a Paging Occasion (PO). In some examples, more than one PO can be included within an eDRX cycle. An eDRX timer can be used to control the duration of waking times and, if desired, to maintain legacy compatibility. Additional examples provide a way for the MME to update calculations regarding the starting time and length of eDRX cycle of the UE such that the MME will continue to be apprised of when the UE will be reachable when the UE moves between cells.
Abstract:
A user equipment (UE) is configured to send a request to use an enhanced power saving mode (ePSM) to a mobility management entity (MME) of a mobile communications network. The UE is configured to receive configuration parameters from the MME including a time length for an idle mode and a time length for a power saving mode. The UE is configured to cycle between the idle mode and the power saving mode based on the power saving mode parameters, wherein the UE is available to receive transmissions during the idle mode and unavailable to receive transmissions during the power saving mode.
Abstract:
A user equipment (UE) is configured to send a request to use an enhanced power saving mode (ePSM) to a mobility management entity (MME) of a mobile communications network. The UE is configured to receive configuration parameters from the MME including a time length for an idle mode and a time length for a power saving mode. The UE is configured to cycle between the idle mode and the power saving mode based on the power saving mode parameters, wherein the UE is available to receive transmissions during the idle mode and unavailable to receive transmissions during the power saving mode.