Abstract:
A computer-implemented method includes managing function calls between a plurality of nodes and a super node of a rack system having a distributed operating system (OS). The OS includes a plurality of functions divided into first class and a second class, and each of the plurality of nodes excludes functions in the second class. Managing the function calls includes detecting a call to a first function on a first node of the plurality of nodes. It is determined that the first function belongs to the second class of functions and is not available on the first node. The call to the first function is routed to the super node, responsive to determining that the first function belongs to the second class, where the super node includes code for the functions in the second class.
Abstract:
A device for reconfigurable power conversion includes a plurality of power-consuming modules adapted to receive a plurality of electrical voltages, and a power converter module including a plurality N of power stages, each of which includes a power output which is adapted to supply one of the plurality of electrical voltages and adapted to be coupled with at least one of the others of the power outputs off the power converter module. Also included is a backplane including a plurality of power rails, each of which is adapted to distribute one of the plurality of electrical voltages from the power converter module to the plurality of power-consuming modules. The power converter module further includes a programmable converter controller which is adapted to reversibly configure the plurality of power stages.
Abstract:
A power converter for a computer device having a processing unit and a memory device is suggested. The power converter is connectable to the computer device by a coupling circuitry, wherein the computer device requires an actual input voltage. The power converter comprises a voltage regulator, a measuring entity, and a determining entity. The voltage regulator is configured to control an actual output voltage for the coupling circuitry based on a determined reference output voltage. The measuring entity is configured to measure an actual output current of the voltage regulator output to the coupling circuitry. The determining entity is configured to determine the determined reference output voltage such that the determined reference output voltage equals a sum of the actual input voltage of the computer device and the product of the measured actual output current and a resistance of the coupling circuitry.
Abstract:
A mechanism is provided for cooling electronic components of a printed circuit board module and for supplying power to the electronic components of the printed circuit board module. The computer module comprises a printed circuit board module, wherein the electronic components are attached to a first side of the printed circuit board module, and a cooling module being attached to a second side of the printed circuit board, being arranged in parallel to the printed circuit board and having a first layer being thermally and electrically conductive. The first layer is arranged such that heat is dissipated from the printed circuit board module and that power from a power source is supplied to the electronic components of the printed circuit board module.