Abstract:
A method and system of stitching a plurality of image views of a scene, including grouping matched points of interest in a plurality of groups, and determining a similarity transformation with smallest rotation angle for each grouping of the matched points. The method further includes generating virtual matching points on non-overlapping area of the plurality of image views and generating virtual matching points on overlapping area for each of the plurality of image views.
Abstract:
A method and system for auto-curating a media are provided. Media content is received over the network interface. A set of markers is identified for the media content, each marker corresponding to one of a plurality of visible and audible cues in the media content. Segments in the media content are identified based on the identified set of markers. An excitement score is computed for each segment based on the identified markers that fall within the segment. A highlight clip is generated by identifying segments having excitement scores greater than a threshold.
Abstract:
A method includes utilizing two or more classifiers to calculate, for an input image, probability scores for a plurality of classes based on visual information extracted from the input image and semantic relationships in a classification hierarchy, wherein each of the two or more classifiers is associated with a given one of two or more levels in the classification hierarchy with each level in the classification hierarchy comprising a subset of the plurality of classes, and classifying the input image based on the calculated probability scores.
Abstract:
Techniques for detecting an event via social media content. A method includes obtaining multiple images from at least one social media source; extracting at least one visual semantic concept from the multiple images; differentiating an event semantic concept signal from a background semantic concept signal to detect an event in the multiple images; retrieving one or more images associated with the event semantic concept signal; grouping the one or more images associated with the event semantic concept signal; annotating the group of one or more images with user feedback; and displaying the annotated group of one or more images as a visual description of the detected event.
Abstract:
A personalization enhancement method and system. The method includes retrieving and analyzing digital content associated with a user. Characteristics describing the digital content are tagged and transferred to a profile of said the user. The profile includes additional characteristics generated during previous analysis of data from the digital content and additional digital content associated with the user. User information associated with products, a location, and a time profile is assigned. The profile is analyzed based on selection and interaction of the user with respect to a consumer Website. The profile includes the characteristics and the additional characteristics with respect to products and services of the consumer Website. A presentation color setting and a group of products and services of are determined for presentation to the user. The group of products and services are presented to the user using the presentation color setting.
Abstract:
A method and systems are provided. A system includes a set of visual and textual classifiers for recognizing semantic concepts in a set of images and assigning semantic scores for the images to predict a gender of a user, and performing gender prediction from visual content and textual content in the images to respectively generate visual-based gender predictions and textual-based gender predictions. The system further includes a multimodal information fusion device for combining, using multimodal information fusion, the visual-based gender predictions, the textual-based gender predictions, and the semantic scores to infer a gender of a user.
Abstract:
A personalization enhancement method and system. The method includes retrieving and analyzing digital content associated with a user. Characteristics describing the digital content are tagged and transferred to a profile of said the user. The profile includes additional characteristics generated during previous analysis of data from the digital content and additional digital content associated with the user. User information associated with products, a location, and a time profile is assigned. The profile is analyzed based on selection and interaction of the user with respect to a consumer Website. The profile includes the characteristics and the additional characteristics with respect to products and services of the consumer Website. A presentation color setting and a group of products and services of are determined for presentation to the user. The group of products and services are presented to the user using the presentation color setting.
Abstract:
A method and systems are provided. A system includes a set of visual and textual classifiers for recognizing semantic concepts in a set of images and assigning semantic scores for the images to predict a gender of a user, and performing gender prediction from visual content and textual content in the images to respectively generate visual-based gender predictions and textual-based gender predictions. The system further includes a multimodal information fusion device for combining, using multimodal information fusion, the visual-based gender predictions, the textual-based gender predictions, and the semantic scores to infer a gender of a user.
Abstract:
Methods, systems, and computer program products for static image segmentation are provided herein. A method includes segmenting an image containing a target object into multiple regions; analyzing video content containing the target object to determine a similarity metric across the multiple segmented regions based on information associated with the multiple segmented regions; and applying the similarity metric to the image to identify two or more of the multiple segmented regions as being portions of the target object.
Abstract:
Techniques for generating cross-modality semantic classifiers and using those cross-modality semantic classifiers for ground level photo geo-location using digital elevation are provided. In one aspect, a method for generating cross-modality semantic classifiers is provided. The method includes the steps of: (a) using Geographic Information Service (GIS) data to label satellite images; (b) using the satellite images labeled with the GIS data as training data to generate semantic classifiers for a satellite modality; (c) using the GIS data to label Global Positioning System (GPS) tagged ground level photos; (d) using the GPS tagged ground level photos labeled with the GIS data as training data to generate semantic classifiers for a ground level photo modality, wherein the semantic classifiers for the satellite modality and the ground level photo modality are the cross-modality semantic classifiers.