Abstract:
Systems and methods are provided for detecting failure in clamping of a material and/or firing of a staple into a clamped material and indicating such failure to a user on a user interface. The system and methods are particularly suited for use with end effectors having closing and/or firing mechanisms coupled to an actuator. By monitoring a driving parameter of an actuator that effects the clamping and/or firing, the systems and methods provide an indication of failure in response to the monitored drive parameter. In some embodiments, an indication of failure is output when the monitored drive parameter is outside an acceptable range of desired driving parameters during clamping and/or firing. The disclosed systems and methods are particularly beneficial when used for minimally invasive surgery.
Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a robotic surgical system may include detecting a first surgical instrument coupled to a first manipulator interface assembly of a teleoperated surgical system, the manipulator interface assembly being controlled by a first input device; detecting which one of a user's left and right hands operates the first input device; and assigning control of an auxiliary function of the first surgical instrument to a first auxiliary input device disposed in a left position relative to a second auxiliary input device if the user's left hand is detected to operate the first input device, or assigning control of an auxiliary function of the first surgical instrument to a second auxiliary input device disposed in a right position relative to the first auxiliary input device if the user's right hand is detected to operate the first input device. A frame of reference of the left position and right position is relative to a user operating the first input device.
Abstract:
A patient side cart for a teleoperated surgical system comprises a base, a manipulator portion extending from the base and configured to hold one or more surgical instruments, four wheels mounted to the base to permit movement of the cart, and a suspension system. The suspension system may be configured to transition the cart between a first state in which the cart behaves as a three-wheeled cart and a second state in which the cart behaves as a four-wheeled cart.
Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a robotic surgical system can include automatically assigning an auxiliary input device to control an auxiliary function of a surgical instrument based on a position of the auxiliary input device and which of a user's hands is operating another input device operably coupled to control movement of the surgical instrument. A system for controlling a surgical instrument may include an input device of a surgical system that is operably coupled to generate and transmit an input control signal to control movement of a surgical instrument operably coupled to the surgical system. The system may further include an auxiliary input device, and a control system operably coupling the auxiliary input device to control an auxiliary function of the surgical instrument based on a position of the auxiliary input device and which of a user's hands is operating the input device.
Abstract:
A method for a minimally invasive surgical system is disclosed including reading first tool information from a storage device in a first robotic surgical tool mounted to a first robotic arm to at least determine a first tool type; reading equipment information about one or more remote controlled equipment for control thereof; comparing the first tool information with the equipment information to appropriately match a first remote controlled equipment of the one or more remote controlled equipment to the first robotic surgical tool; and mapping one or more user interface input devices of a first control console to control the first remote controlled equipment to support a function of the first robotic surgical tool.