Abstract:
A time-of-flight (TOF) sensor includes an array of pixels. Each pixel includes: a differential pixel configured to output a differential voltage signal between first and second nodes, based on an electrical modulation signal applied to different regions of the differential pixel and an incoming correlated light signal; a first readout circuit coupled to the first node; a second readout circuit coupled to the second node; and a compensation circuit coupled to the first and second readout circuits and configured to compensate for offset caused by incoming uncorrelated light. Each readout circuit has a storage device configured to be discharged by photo current during an exposure phase, sensed during a readout phase and recharged during a reset phase. Recharging of each storage device is controlled by a single reset transistor included in each compensation circuit or by one or more global reset transistors located outside the array of pixels.
Abstract:
A time-of-flight (TOF) camera system includes a radiation source, a radiation detector, a location sensor system and a processor. The radiation source is configured to generate and emit a radiation that strikes a target object. The radiation detector is configured to detect the radiation reflected from the target object and generate a sample set comprising at least two raw samples detected in succession at different times based on the reflected radiation. The location sensor system is configured to detect movements of the TOF camera during the detection and generate a movement signal having portions thereof uniquely corresponding to each of the raw samples of the sample set based on the movements of the TOF camera, wherein a portion of the movement signal is detected at a same time of generating the corresponding raw sample. The processor is configured to receive the raw samples and the corresponding movement signal portions and generate an object information based on the raw samples and the corresponding movement signal portion.
Abstract:
A time-of-flight (TOF) camera system includes a radiation source, a radiation detector, a location sensor system and a processor. The radiation source is configured to generate and emit a radiation that strikes a target object. The radiation detector is configured to detect the radiation reflected from the target object and generate a sample set comprising at least two raw samples detected in succession at different times based on the reflected radiation. The location sensor system is configured to detect movements of the TOF camera during the detection and generate a movement signal having portions thereof uniquely corresponding to each of the raw samples of the sample set based on the movements of the TOF camera, wherein a portion of the movement signal is detected at a same time of generating the corresponding raw sample. The processor is configured to receive the raw samples and the corresponding movement signal portions and generate an object information based on the raw samples and the corresponding movement signal portion.
Abstract:
A time-of-flight (TOF) sensor includes an array of pixels. Each pixel includes: a differential pixel configured to output a differential voltage signal between first and second nodes, based on an electrical modulation signal applied to different regions of the differential pixel and an incoming correlated light signal; a first readout circuit coupled to the first node; a second readout circuit coupled to the second node; and a compensation circuit coupled to the first and second readout circuits and configured to compensate for offset caused by incoming uncorrelated light. Each readout circuit has a storage device configured to be discharged by photo current during an exposure phase, sensed during a readout phase and recharged during a reset phase. Recharging of each storage device is controlled by a single reset transistor included in each compensation circuit or by one or more global reset transistors located outside the array of pixels.
Abstract:
An imaging system may comprise a plurality of pixels to selectively operate in a first operating mode or a second operating mode. When operating in the first operating mode, the plurality of pixels is binned during an exposure phase such that an output during a readout phase corresponds to a summed photocurrent that is a sum of a plurality of concurrent photocurrents, each corresponding to one of the plurality of pixels. When operating in the second operating mode, the plurality of pixels is not binned during the exposure phase such that an output during the readout phase corresponds to a set of separate photocurrents, each corresponding to one of a set of the plurality of pixels.
Abstract:
An imaging system may comprise a plurality of pixels to selectively operate in a first operating mode or a second operating mode. When operating in the first operating mode, the plurality of pixels is binned during an exposure phase such that an output during a readout phase corresponds to a summed photocurrent that is a sum of a plurality of concurrent photocurrents, each corresponding to one of the plurality of pixels. When operating in the second operating mode, the plurality of pixels is not binned during the exposure phase such that an output during the readout phase corresponds to a set of separate photocurrents, each corresponding to one of a set of the plurality of pixels.
Abstract:
Representative implementations of devices and techniques provide conservation of charge in a pixel. Charge in the pixel may be alternately stored in a first gate capacitance of the pixel and a second gate capacitance of the pixel. Transferring the charge between the gate capacitances conserves some or all of the charge, and reduces input power used to charge the gate capacitances.
Abstract:
Representative implementations of devices and techniques provide conservation of charge in a pixel. Charge in the pixel may be alternately stored in a first gate capacitance of the pixel and a second gate capacitance of the pixel. Transferring the charge between the gate capacitances conserves some or all of the charge, and reduces input power used to charge the gate capacitances.
Abstract:
Representative implementations of devices and techniques provide dynamic calibration for imaging devices and systems. A reference pixel is arranged to receive an electrical reference signal and to output a calibration signal. The reference signal may be based on imaging illumination.
Abstract:
A sensor array arrangement for a time of flight measurement system is disclosed. The arrangement includes a plurality of pixels and circuitry. The plurality of pixels are configured such that a first plurality of pixels receive a first reference signal and a second plurality of pixels receive a second reference signal. The first and second reference signals are phase shifted with respect to each other. The circuitry calculates depth information by combining information from first and second pixel sensor signals. The first pixel sensor signal is based on the first reference signal. The second pixel sensor signal is based on the second reference signal.