Abstract:
Methods and apparatus relating to processor extensions for execution of secure embedded containers are described. In an embodiment, a scalable solution for manageability function is provided, e.g., for UMPC environments or otherwise where utilizing a dedicated processor or microcontroller for manageability is inappropriate or impractical. For example, in an embodiment, an OS (Operating System) or VMM (Virtual Machine Manager) Independent (generally referred to herein as “OI”) architecture involves creating one or more containers on a processor by dynamically partitioning resources (such as processor cycles, memory, devices) between the HOST OS/VMM and the OI container. Other embodiments are also described and claimed.
Abstract:
There is disclosed in one example, a system-on-a-chip (SoC), including: a processor core; a fabric; an intellectual property (IP) block communicatively coupled to the processor core via the fabric, the IP block having a microcontroller configured to provide a microcontroller architecture; a firmware load interface configured to provide a standardized hardware interface to the microcontroller architecture, wherein the standardized hardware interface provides an architecture-agnostic mechanism to securely load a firmware to the intellectual property block; and logic to provide a loader to load a firmware to the IP block via the firmware load interface.
Abstract:
A manageability engine (ME) receives an authentication response from a user during pre-boot authentication and registers the user with a key distribution center (KDC), indicating that the user has successfully authenticated to the PC. The KDC supplies the ME with single-sign-on credentials in the form of a Key Encryption Key (KEK). The KEK may later be used by the PC to obtain a credential used to establish secure access to Enterprise servers.
Abstract:
Systems and methods may provide implementing one or more device locking procedures to block access to a device. In one example, the method may include receiving an indication that a user is no longer present, initiating a timing mechanism to set a period to issue a first device lock instruction to lock a peripheral device, relaying timing information from the timing mechanism to a controller module associated with the peripheral device; and locking the peripheral device upon expiration of the period.
Abstract:
Methods and apparatus relating to processor extensions for execution of secure embedded containers are described. In an embodiment, a scalable solution for manageability function is provided, e.g., for UMPC environments or otherwise where utilizing a dedicated processor or microcontroller for manageability is inappropriate or impractical. For example, in an embodiment, an OS (Operating System) or VMM (Virtual Machine Manager) Independent (generally referred to herein as “OI”) architecture involves creating one or more containers on a processor by dynamically partitioning resources (such as processor cycles, memory, devices) between the HOST OS/VMM and the OI container. Other embodiments are also described and claimed.
Abstract:
Methods and apparatus relating to processor extensions for execution of secure embedded containers are described. In an embodiment, a scalable solution for manageability function is provided, e.g., for UMPC environments or otherwise where utilizing a dedicated processor or microcontroller for manageability is inappropriate or impractical. For example, in an embodiment, an OS (Operating System) or VMM (Virtual Machine Manager) Independent (generally referred to herein as “OI”) architecture involves creating one or more containers on a processor by dynamically partitioning resources (such as processor cycles, memory, devices) between the HOST OS/VMM and the OI container. Other embodiments are also described and claimed.
Abstract translation:描述与用于执行安全嵌入式容器的处理器扩展有关的方法和装置。 在一个实施例中,提供了用于可管理性功能的可扩展解决方案,例如对于UMPC环境,或者其他利用专用处理器或微控制器进行可管理性是不合适或不切实际的。 例如,在一个实施例中,OS(操作系统)或VMM(虚拟机管理器)独立(本文通常称为“OI”)架构涉及通过动态地划分资源(例如处理器周期)来在处理器上创建一个或多个容器 ,内存,设备)在HOST OS / VMM和OI容器之间。 还描述和要求保护其他实施例。
Abstract:
In one embodiment, a processor includes a microcode storage including processor instructions to create and execute a hidden resource manager (HRM) to execute in a hidden environment that is not visible to system software. The processor may further include an extend register to store security information including a measurement of at least one kernel code module of the hidden environment and a status of a verification of the at least one kernel code module. Other embodiments are described and claimed.