Abstract:
Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
Abstract:
Erbium silicide layers can be used in CMOS transistors in which the work function of the erbium silicide layers can be tuned for use in PMOS and NMOS devices. A nano-laminate sputtering approach can be used in which silicon and erbium layers are alternatingly deposited to determine optimum layer properties, composition profiles, and erbium to silicon ratios for a particular gate stack.