摘要:
Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
摘要:
A nonvolatile memory device contains a resistive switching memory element with improved device switching performance and lifetime by custom tailoring the average concentration of defects in the resistive switching film and methods of forming the same. The nonvolatile memory element includes a first electrode layer, a second electrode layer, and a resistive switching layer disposed between the first electrode layer and the second electrode layer. The resistive switching layer comprises a first sub-layer and a second sub-layer, wherein the first sub-layer has more defects than the first sub-layer. A method includes forming a first sub-layer on the first electrode layer by a first ALD process and forming a second sub-layer on the first sub-layer by a second ALD process, where the first sub-layer has a different amount of defects than the second sub-layer.
摘要:
Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A ReRAM cell includes an embedded resistor and resistive switching layer connected in series. The embedded resistor prevents excessive electrical currents through the resistive switching layer, especially when the resistive switching layer is switched into its low resistive state, thereby preventing over-programming. The embedded resistor includes aluminum, nitrogen, and one or more additional metals (other than aluminum). The concentration of each component is controlled to achieve desired resistivity and stability of the embedded resistor. In some embodiments, the resistivity ranges from 0.1 Ohm-centimeter to 40 Ohm-centimeter and remains substantially constant while applying an electrical field of up 8 mega-Volts/centimeter to the embedded resistor. The embedded resistor may be made from an amorphous material, and the material is operable to remain amorphous even when subjected to typical annealing conditions.
摘要:
A method of fabricating a resistive random access memory (ReRAM) cell may include forming a set of nanolaminate structures over an electrode, such that each structure includes at least one first element oxide layer and at least one second element oxide layer. The overall set is operable as a resistive switching layer in a ReRAM cell. In this set, an average atomic ratio of the first element to the second element is different in at least two nanolaminate structures. This ratio may be less in nanolaminate structures that are closer to electrodes than in the middle nanolaminate structures. Alternatively, this ratio may increase from one end of the set to another. The first element may be less electronegative than the second elements. The first element may be hafnium, while the second element may be one of zirconium, aluminum, titanium, tantalum, or silicon.
摘要:
A method of fabricating a resistive random access memory (ReRAM) cell may include forming a set of nanolaminate structures over an electrode, such that each structure includes at least one first element oxide layer and at least one second element oxide layer. The overall set is operable as a resistive switching layer in a ReRAM cell. In this set, an average atomic ratio of the first element to the second element is different in at least two nanolaminate structures. This ratio may be less in nanolaminate structures that are closer to electrodes than in the middle nanolaminate structures. Alternatively, this ratio may increase from one end of the set to another. The first element may be less electronegative than the second elements. The first element may be hafnium, while the second element may be one of zirconium, aluminum, titanium, tantalum, or silicon.
摘要:
Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
摘要:
Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A ReRAM cell includes an embedded resistor and resistive switching layer connected in series. The embedded resistor prevents excessive electrical currents through the resistive switching layer, especially when the resistive switching layer is switched into its low resistive state, thereby preventing over-programming. The embedded resistor includes aluminum, nitrogen, and one or more additional metals (other than aluminum). The concentration of each component is controlled to achieve desired resistivity and stability of the embedded resistor. In some embodiments, the resistivity ranges from 0.1 Ohm-centimeter to 40 Ohm-centimeter and remains substantially constant while applying an electrical field of up 8 mega-Volts/centimeter to the embedded resistor. The embedded resistor may be made from an amorphous material, and the material is operable to remain amorphous even when subjected to typical annealing conditions.
摘要:
Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A ReRAM cell includes an embedded resistor and resistive switching layer connected in series. The embedded resistor prevents excessive electrical currents through the resistive switching layer, especially when the resistive switching layer is switched into its low resistive state, thereby preventing over-programming. The embedded resistor includes aluminum, nitrogen, and one or more additional metals (other than aluminum). The concentration of each component is controlled to achieve desired resistivity and stability of the embedded resistor. In some embodiments, the resistivity ranges from 0.1 Ohm-centimeter to 40 Ohm-centimeter and remains substantially constant while applying an electrical field of up 8 mega-Volts/centimeter to the embedded resistor. The embedded resistor may be made from an amorphous material, and the material is operable to remain amorphous even when subjected to typical annealing conditions.
摘要:
Provided are resistive random access memory (ReRAM) cells having bi-layered metal oxide structures. The layers of a bi-layered structure may have different compositions and thicknesses. Specifically, one layer may be thinner than the other layer, sometimes as much as 5 to 20 times thinner. The thinner layer may be less than 30 Angstroms thick or even less than 10 Angstroms thick. The thinner layer is generally more oxygen rich than the thicker layer. Oxygen deficiency of the thinner layer may be less than 5 atomic percent or even less than 2 atomic percent. In some embodiments, a highest oxidation state metal oxide may be used to form a thinner layer. The thinner layer typically directly interfaces with one of the electrodes, such as an electrode made from doped polysilicon. Combining these specifically configured layers into the bi-layered structure allows improving forming and operating characteristics of ReRAM cells.
摘要:
Provided are methods of fabricating memory cells such as resistive random access memory (ReRAM) cells. A method involves forming a first layer including two high-k dielectric materials such that one material has a higher dielectric constant than the other material. In some embodiments, hafnium oxide and titanium oxide form the first layer. The higher-k material may be present at a lower concentration. In some embodiments, a concentration ratio of these two high-k materials is between about 3 and 7. The first layer may be formed using atomic layer deposition. The first layer is then annealed in an oxygen-containing environment. The method may proceed with forming a second layer including a low-k dielectric material, such as silicon oxide, and forming an electrode. After forming the electrode, the memory cell is annealed in a nitrogen containing environment. The nitrogen anneal may be performed at a higher temperature than the oxygen anneal.