Abstract:
A system, apparatus, and method for analyzing photon emission data to discriminate between photons emitted by transistors and photons emitted by background sources. The analysis involves spatial and/or temporal correlation of photon emissions. After correlation, the analysis may further involve obtaining a likelihood that the correlated photons were emitted by a transistor. After correlation, the analysis may also further involve assigning a weight to individual photon emissions as a function of the correlation. The weight, in some instances, reflecting a likelihood that the photons were emitted by a transistor. The analysis may further involve automatically identifying transistors in a photon emission image.
Abstract:
Systems and methods consistent with principles of the present invention allow contactless measuring of various kinds of electrical activity within an integrated circuit. The invention can be used for high-bandwidth, at speed testing of various devices on a wafer during the various stages of device processing, or on packaged parts at the end of the manufacturing cycle. Power is applied to the test circuit using conventional mechanical probes or other means, such as CW laser light applied to a photoreceiver provided on the test circuit. The electrical test signal is introduced into the test circuit by stimulating the circuit using a contactless method, such as by directing the output of one or more modelocked lasers onto high-speed receivers on the circuit, or by using a high-speed pulsed diode laser. The electrical activity within the circuit in response to the test signal is sensed by a receiver element, such as a time-resolved photon counting detector, a static emission camera system, or by an active laser probing system. The collected information is used for a variety of purposes, including manufacturing process monitoring, new process qualification, and model verification.
Abstract:
A system, apparatus, and method for analyzing photon emission data to discriminate between photons emitted by transistors and photons emitted by background sources. The analysis involves spatial and/or temporal correlation of photon emissions. After correlation, the analysis may further involve obtaining a likelihood that the correlated photons were emitted by a transistor. After correlation, the analysis may also further involve assigning a weight to individual photon emissions as a function of the correlation. The weight, in some instances, reflecting a likelihood that the photons were emitted by a transistor. The analysis may further involve automatically identifying transistors in a photon emission image.
Abstract:
A beacon circuit enabling study of active elements in an integrated circuit is disclosed. The beacon circuit may be integral to a DUT to be tested. The DUT is stimulated by a conventional ATE, so that its active devices are operating. The signal from the active device is sent to the beacon circuit which, in response to the signal, emits light having intensity that is proportional to the value of the signal. In one example, the beacon circuit is constructed as a voltage to current converter having its input connected to the node of interest and its output connected to a current to light converter. In one example, the current to light converter is implemented as a current mirror circuit. One beneficial implementation disclosed is the use of the beacon circuit for the study of voltage supply disturbances.
Abstract:
A universal diagnostic platform (UDP) is described which incorporates several measurement modules for testing a device under test (DUT). Users can switch between measurement modules without removing the DUT. The UDP employs a common fixturing and software system for all the modules.
Abstract:
An apparatus for providing modulation mapping is disclosed. The apparatus includes a laser source, a motion mechanism providing relative motion between the laser beam and the DUT, signal collection mechanism, which include a photodetector and appropriate electronics for collecting modulated laser light reflected from the DUT, and a display mechanism for displaying a spatial modulation map which consists of the collected modulated laser light over a selected time period and a selected area of the IC.
Abstract:
An apparatus for providing modulation mapping is disclosed. The apparatus includes a laser source, a motion mechanism providing relative motion between the laser beam and the DUT, signal collection mechanism, which include a photodetector and appropriate electronics for collecting modulated laser light reflected from the DUT, and a display mechanism for displaying a spatial modulation map which consists of the collected modulated laser light over a selected time period and a selected area of the IC.
Abstract:
Systems and methods consistent with principles of the present invention allow contactless measurements of voltage characteristics of dynamic electrical signals in integrated circuits. The invention utilizes a signal analysis circuit, such as a voltage comparator, disposed with the circuit under test, which is optically coupled with the external timing measurement equipment. The signal analysis circuit changes its state depending on the characteristics of the measured electrical signal applied thereto. The changes in the condition of the signal analysis circuit are sensed by the external timing measurement equipment provided outside the circuit under test. To this end, the signal analysis circuit is optically coupled with the external measurement equipment registering specific changes in the condition of the signal analysis circuit. The information on the condition of the signal analysis circuit registered by the external measurement equipment is used to study the characteristics of the dynamic electrical signals within the circuit.
Abstract:
A system, apparatus, and method for analyzing photon emission data to discriminate between photons emitted by transistors and photons emitted by background sources. The analysis involves spatial and/or temporal correlation of photon emissions. After correlation, the analysis may further involve obtaining a likelihood that the correlated photons were emitted by a transistor. After correlation, the analysis may also further involve assigning a weight to individual photon emissions as a function of the correlation. The weight, in some instances, reflecting a likelihood that the photons were emitted by a transistor. The analysis may further involve automatically identifying transistors in a photon emission image.
Abstract:
An apparatus and method for laser probing of a DUT at very high temporal resolution is disclosed. The system includes a CW laser source, a beam optics designed to point two orthogonally polarized beams at the same location on the DUT, optical detectors for detecting the reflected beams, collection electronics, and an oscilloscope. The beam optics defines a common-path polarization differential probing (PDP) optics. The common-path PDP optics divides the laser beam into two beams of orthogonal polarization. Due to the intrinsic asymmetry of a CMOS transistor, the interaction of the beams with the DUT result in different phase modulation in each beam. This difference can be investigated to study the response of the DUT to the stimulus signal.