Abstract:
When a dynamic channel allocation method based on monitoring of signal levels is used for channel allocation, the results of signal level measurements must be averaged in order to achieve a sufficient reliability. Averaging causes a delay in measurement results, for which reason such a channel may be allocated the interference level of which has just changed e.g. because another connection has been set up which functions nearby on the same channel. According to the invention, allocation of a channel causing excessive interference with a connection already set up is limited.
Abstract:
The invention relates to a method for transmitting data for a multimedia broadcast/multicast service (MBMS) from a radio access network of a cellular communication network via a radio interface to mobile terminals located in a radio cell supplied by said radio access network. The radio access network transmits paging messages on a common control channel. It is proposed that a dedicated channel is employed for transmitting the MBMS data, which dedicated channel is allocated in a way that the mobile terminals are able to receive simultaneously paging messages and the MBMS data. The invention relates equally to a corresponding network entity, mobile terminal and communication system.
Abstract:
Data may be transferred on a packet radio network by creating a connection between two network entities. The data flow may contain active and passive periods. A connection may be maintained during a passive period for a predetermined amount of time or until further data becomes available for transfer.
Abstract:
A method for choosing channel coding and/or interleaving scheme is applied in a communication connection over a radio interface between a terminal and a base station of a cellular packet radio system. A certain decision-making device allocates channel coding and/or interleaving schemes to communication connections. A request message is communicated (to the decision-making device, indicating a certain set of Quality of Service parameters associated with a certain first communication connection. The set of Quality of Service parameters is mapped to a certain first channel coding and/or interleaving scheme as a part of the channel coding and/or interleaving scheme allocation made by the decision-making device. The first channel coding and/or interleaving scheme is communicated to the base station and the terminal for them to apply said first channel coding and/or interleaving scheme in the first communication connection.
Abstract:
A method as described by which an application executing in an application layer of a multi-layer communication protocol forming part of a general packet radio service (GPRS) session can signal for the setup and release of Temporary Block Flow (TBF) which will not be released during application execution in silent (inactive) periods. When applications such as voice, telnet or web browsing have specific traffic type data that have inactive periods between active periods are to be carried over GPRS, the session consists of multiple active periods. Current TBF release procedures lead to multiple TBF setups during such sessions. With the method described, a special type of TBF can be set up with special procedures for release of this TBF which greatly minimizes the need for multiple TBF setups during a session containing data transfers with inactive periods between active data transmissions.
Abstract:
A method for routing MBMS (Multicast/Broadcast Multimedia Service) service data from a first network entity to a second network entity is presented. Accordingly, a system comprising a Gb interface between a first and a second network entity arranged to route MBMS service data over the Gb interface is presented. A device for routing data over the Gb interface is presented. The routing is enabled by defining a PFI (Packet Flow Identifier) and by creating a corresponding PFC (Packet Flow Context) for said MBMS service.
Abstract:
A method for transferring a data packet from a compressor to a decompressor said data packet including a header with header data fields. A number of the header data fields that remain constant during the data transfer are stored in the decompressor. In a compressed data packet, a header data field that varies is replaced by a compressed value identifying a data packet in a compression sequence. In the decompressor context data comprising information for relating the received compressed value to a corresponding compression sequence is maintained and the information is updated according to the received compressed values. The compressed value and the information of the corresponding compression sequence are used for mapping the compressed value into a decompressed header data field. Thus compressed data is unambiguously mapped to a full packet data header field in the decompressor side throughout the session.
Abstract:
A method is presented for implementing a cell change for a mobile station (MS) in a packet-switched cellular radio system comprising a first base station (BTSold), a second base station (BTSnew) and a controlling unit (PCU, PCUold) controlling the operation of at least the first base station (BTSold). The method comprises the steps of establishing at the controlling unit (PCU, PCUold) the knowledge about the mobile station's (MS) need for performing a cell change from the cell of the first base station (BTSold) to the cell of the second base station BTSnew) while the mobile station (MS) is still communicating with the first base station (BTSold), transmitting from the controlling unit (PCU, PCUold) towards the mobile station through the first base station (BTSold) a first message (207, 309, 410) in order to fix an oncoming first moment of lime (209) as the moment of performing cell change and from said first moment of time onwards (209) providing access for the mobile station to the cell of the second base station.
Abstract:
Methods for controlling data rate allocations to data packet users transmitting packet data over a CDMA cellular communication network are defined which comprises the steps of: evaluating traffic channels and radio capacity allocated for packet data services within the network to determine an available resource for a packet data transmission; employing a rate control algorithm to determine a data rate allocation for the packet data transmission; and limiting the transmit power of a transmitter to provide the determined data rate allocation for the packet data transmission. The methods include a rate control algorithm which determines data rate allocation using a transmission power budget technique and a rate control algorithm which determines data rate allocation using a current system load technique.
Abstract:
A method and an arrangement for transferring information including delay sensitive data, such as speech and video data, in a packet radio service is provided. Data blocks are transmitted from a mobile station to a radio resource entity during a first active data transfer period using an uplink temporary block flow (TBF) connection. The uplink TBF connection is maintained during a passive period that follows the first active data transfer period, wherein during the passive period the mobile station does not send data blocks to the radio resource entity.