Abstract:
A ceramic matrix composite (CMC) component for a combustion turbine engine (10). A blade shroud assembly (30) may be formed to include a CMC member (32) supported from a metal support member (32). The CMC member includes arcuate portions (50, 52) shaped to surround extending portions (46, 48) of the support member to insulate the metal support member from hot combustion gas (16). The use of a low thermal conductivity CMC material allows the metal support member to be in direct contact with the CMC material. The gap (42) between the CMC member and the support member is kept purposefully small to limit the stress developed in the CMC member when it is deflected against the support member by the force of a rubbing blade tip (14). Changes in the gap dimension resulting from differential thermal growth may be regulated by selecting an angle (A) of a tapered slot (76) defined by the arcuate portion.
Abstract:
A multi-layer ceramic matrix composite structure (40) having a plurality of fiber-reinforced cooling passages (42) formed therein. The cooling passages are formed by the removal of a fugitive material (24). The fugitive material is part of a wrapped fugitive material structure (28) containing a layer of reinforcing ceramic fibers (26) that is used to lay-up the multi-layer structure. An intermediate layer of ceramic fabric 56 may be placed alternately over and under the wrapped fugitive material structure to separate the cooling passages into alternating upper (54) and lower (52) cooling passages. The transversely oriented fibers surrounding the cooling passages serve to increase the interlaminar strength of the structure when compared to prior art designs. An airfoil member (112) incorporating such reinforced integral cooling passages (120) is provided.
Abstract:
A multiple laser sight system for an archery bow or the like configured so that the multiple laser systems can be calibrated together and having features such that the user can use one laser system during the day and one laser system during the light. The laser sight is further configured to not interfere with the optional use of conventional sighting pins and the use of evening infrared systems, like the prior art use of night vision goggles.
Abstract:
Aspects of the invention relate to a construction system and method for components in high temperature environments, such as the hot gas path components of a turbine engine. Such a component can include a skeleton and a coating. The skeleton can be formed by a plurality of interconnected frame members, which can give the component its general shape. The frame members can be made of ceramic matrix composite. A coating can be provided around at least a portion of the skeleton. Preferably, the coating is a refractory material, such as refractory ceramic. Examples of turbine engine components that can be constructed according to aspects of the invention are airfoils with or without platforms, blade rings, combustor tiles and heat shields. A component according to aspects of the invention can be made using low cost fabrication and construction methods.
Abstract:
A component (10) for a gas turbine engine formed of a stacked plurality of ceramic matrix composite (CMC) lamellae (12) supported by a metal support structure (20). Individual lamellae are supported directly by the support structure via cooperating interlock features (30, 32) formed on the lamella and on the support structure respectively. Mating load-transferring surfaces (34, 36) of the interlock features are disposed in a plane (44) oblique to local axes of thermal growth (38, 40) in order to accommodate differential thermal expansion there between with delta alpha zero expansion (DAZE). Reinforcing fibers (62) within the CMC material may be oriented in a direction optimized to resist forces being transferred through the interlock features. Individual lamellae may all have the same structure or different interlock feature shapes and/or locations may be used in different groups of the lamellae. Applications for this invention include an airfoil assembly (10) and a ring segment assembly (82).
Abstract:
A stacked ceramic matrix composite lamellate assembly (10) including shear force bearing structures (48) for resisting relative sliding movement between adjacent lamellae. The shear force bearing structures may take the form of a cross-lamellar stitch (50), a shear pin (62), a warp (90) in the lamellae, a tongue (104) and groove (98) structure, or an inter-lamellar sealing member (112), in various embodiments. Each shear force bearing structure secures a subset of the lamellae, with at least one lamella being common between adjacent subsets in order to secure the entire assembly.
Abstract:
A ceramic matrix composite material (CMC) vane for a gas turbine engine wherein the airfoil member (12) and the platform member (14) are formed separately and are then bonded together to form an integral vane component (10). Airfoil member and the platform member may be bonded together by an adhesive (20) after being fully cured. Alternatively, respective joint surfaces (16, 18) of the green body state airfoil member and platform member may be co-fired together to form a sinter bond (30). A mechanical fastener (38) and/or a CMC doubler (42) may be utilized to reinforce the bonded joint (40). A matrix infiltration process (50) may be used to create or to further strengthen the bond.
Abstract:
A multiple laser sight system for an archery bow or the like configured so that the multiple laser systems can be calibrated together and having features such that the user can use one laser system during the day and one laser system during the light. The laser sight is further configured to not interfere with the optional use of conventional sighting pins and the use of evening infrared systems, like the prior art use of night vision goggles.
Abstract:
Embodiments of the invention relate to various cooling systems for a turbine vane made of stacked ceramic matrix composite (CMC) laminates. Each airfoil-shaped laminate has an in-plane direction and a through thickness direction substantially normal to the in-plane direction. The laminates have anisotropic strength characteristics in which the in-plane tensile strength is substantially greater than the through thickness tensile strength. Such a vane construction lends itself to the inclusion of various cooling features in individual laminates using conventional manufacturing and forming techniques. When assembled in a radial stack, the cooling features in the individual laminates can cooperate to form intricate three dimensional cooling systems in the vane.
Abstract:
An airfoil (44) formed of a plurality of pre-fired structural CMC panels (46, 48, 50, 52). Each panel is formed to have an open shape having opposed ends (54) that are free to move during the drying, curing and/or firing of the CMC material in order to minimize interlaminar stresses caused by anisotropic sintering shrinkage. The panels are at least partially pre-shrunk prior to being joined together to form the desired structure, such as an airfoil (42) for a gas turbine engine. The panels may be joined together using a backing member (30), using flanged ends (54) and a clamp (56), and/or with a bond material (36), for example.