Abstract:
The invention relates to a riveting element (R) for riveting parts which are made from composite materials (M1 and M2) and provided with a through-hole. The invention is characterized in that it consists of: a hollow bushing (200) including, at one end, a head (210) bearing on the surface of one of the parts to be assembled and a hollow rod (220); and a semi-tubular insert (100) including a first end (110) capable of being inserted into the hollow part of the bushing (200) and an open end (130) capable of deforming in order to form an enlarged base that bears on the surface of the other part that is to be assembled once the insert (100) is translatably locked inside the bushing (200). The invention also relates to the installation tool configured for one such element.
Abstract:
A method of operating with a rivet is for the coupling and the tack riveting together of a first element and a second element. The method comprises positioning the rivet such that the rivet traverses two substantially coaxial openings arranged in the first and second elements to be assembled; pulling the mandrel to form a bulb on the second end; and resuming pulling of the mandrel, to cause a rupture of the sleeve at the bulb so as to permit removal, by way of the external surface of the first element, of the mandrel and of a first portion of the sleeve as well as the falling away of the portion of the bulb remaining on the external surface of the second element.
Abstract:
The invention concerns a manufacturing method requiring precise positioning of fixing components relative to another receiving component designed to receive same, the positioning being carried out by means of an equipment provided therefor, characterized in that it consists in measuring the components designed to be positioned to ascertain the tolerance curve (C) of said components and in modifying the settings of the positioning equipment such that the curve (C) for dimensioning the components is in the middle of the positioning tolerance zone. The invention also concerns an adapted software product. The invention is useful for the statistical control of processes in particular for piercing/riveting processes.
Abstract:
The invention relates to a device (D) for dispensing parts (R), e.g. rivets, which are delivered at the outlet of a storage means such as a vibrating bowl (100), said outlet (110) comprising a displacement path for the parts (R). The inventive device is characterized in that it comprises: a command unit (200) which authorises the individual passage of parts (R) being delivered by the storage and dispensing means (100) into a conduit (C), a control unit (300) which orients each part (R) passing through the conduit (C), and a suction means which is intended to drive the already-moving parts (R) individually into the conduit by accelerating the part (R) which is most affected by the vacuum. The invention also relates to the corresponding operating method and to the vibrating bowl which is adapted to one such device. The invention is suitable for dispensing parts such as rivets.
Abstract:
The invention relates to a blind riveting member of the type comprising a tubular sleeve (1) and a mandrel (2) passing through said sleeve. The stem portion (5) of the tubular sleeve (1) comprises successively along its length, a first articulation zone (5a), an inclined portion (5b), a second articulation zone (5c) and an end portion (5d). These zones or portions are arranged in such a manner that the sleeve is subjected to a double folding during setting of the rivet which causes the inclined portion to expand and fold back upon itself toward the materials being assembled, forming a continuous rest surface at the periphery of the hole which contains the riveting member. The invention is applied in particular for assembling fragile materials such as composite materials. It permits providing a good vibration resistant holding for these materials without risk of damaging the same.
Abstract:
The invention relates to a riveting element (R) for riveting parts which are made from composite materials (M1 and M2) and provided with a through-hole. The invention is characterized in that it consists of: a hollow bushing (200) including, at one end, a head (210) bearing on the surface of one of the parts to be assembled and a hollow rod (220); and a semi-tubular insert (100) including a first end (110) capable of being inserted into the hollow part of the bushing (200) and an open end (130) capable of deforming in order to form an enlarged base that bears on the surface of the other part that is to be assembled once the insert (100) is translatably locked inside the bushing (200). The invention also relates to the installation tool configured for one such element.
Abstract:
The invention relates to a method for installing a rivet (R, R′, R″, R2) for the purpose of assembling at least two elements (300, 400) through which a hole passes, in which the rivet (R) is positioned in said hole and is of the type comprising a head (100) coming to rest on the edge of the hole and a tubular or semi-tubular rod (200) of which the free open end (220) is deformed, for the purpose of creating a bearing surface, in which a snap (B, B′) ensures the deformation of said free end (220) by bringing the snap (B, B′) toward the first tool,remarkable in that it consists of interposing a film (500, 600, 700) of material between the snap (B, B′) and the end to be deformed during installation.The invention also relates to a corresponding rivet and installation tool.Applications: rivet installation.
Abstract:
Disclosed is blind rivet including a hollow sleeve, a crimping ring, and a mandrel, received by the hollow sleeve and by the crimping ring. The mandrel includes a head configured to bear against the sleeve, and a shank configured to receive a traction load from a tool. There is a breaking groove which breaks off when the traction load reaches a certain value. The breaking groove including a breaking groove bottom, a first breaking-groove-side extending from the breaking groove bottom toward the shank, a second breaking-groove-side extending from the breaking groove bottom towards the head. A first breaking-groove-side and a central axis of the mandrel define a first angle, and a second breaking-groove-side and the central axis define an angle greater than the first angle. An embrittlement groove is contiguous with the first breaking-groove-side.
Abstract:
Disclosed is a system of displacing a plurality of parts to be stocked and distributed, each part defining a first end and a second end. The system comprises a conduit, the conduit defining an interior to house an actuation fluid, an axis of displacement in the interior, and an interior surface; and a plurality of devices. Each device includes a periphery configured to contact the interior surface of the conduit and to move along the interior surface, a device first surface approximately perpendicular to the axis of displacement, the device first surface being subject to a pressure of the actuation fluid thereby subjecting the device to displacement in the conduit, a first device-end shaped to receive the first end of a corresponding first part in the plurality of parts, and a second device-end shaped to receive the second end of a corresponding second part in the plurality of parts. The second device-end defines a recess including a bottom surface intersected by the axis of displacement, the recess being configured to center the corresponding second part in the conduit. The device is positioned between the corresponding first part and the corresponding second part in the conduit.
Abstract:
The invention relates to a device (D) that enables the displacement of a part (P) inside a conduit (T) inside of which a moving fluid circulates. This device is characterized by being comprised of a body (100) that, when being assigned to each part (P), has at least one portion of its periphery (110) that comes into guiding contact with the inner surface (200) of the conduit (T) inside of which the parts (P) should move, and has at least one supporting surface essentially perpendicular to the axis of displacement inside the conduit (T) for the displacement fluid, the two ends (120, 130) of the device (D) being pre-shaped for accommodating and centering the parts (P) with those with which it is in contact. The device is used for storing and distributing parts inside a conduit.