摘要:
A technique configures an intermediate network node to automatically determine whether a route advertised by a routing protocol is important for fast convergence in a computer network. As used herein, an important route needed for fast convergence is a route advertised by the routing protocol, such as an exterior gateway routing protocol (EGP) process executing on the node, as a next-hop address, since external connectivity relies on such a route. Notably, the EGP process interacts with an interior gateway routing protocol (IGP) process executing on the node to identify the route as an important route. Identification of an important route, in turn, allows IGP to process the route in a high priority fashion, thereby facilitating fast convergence.
摘要:
A technique incorporates an efficient means for avoiding micro-loops on a backup path associated with a failed protected link. An intermediate node delays updating a forwarding database (FDB) contained in the intermediate node based on the intermediate node's distance from the failed link. Specifically, intermediate nodes near the failed protected link delay updating their FDBs for a longer period of time than nodes farther away from the failed link. By updating FDBs in this manner, micro-loops may be avoided on the failed link's backup path as nodes on the backup path that are close to the failed link do not update their FDBs ahead of nodes farther away on the backup path.
摘要:
In one embodiment, once activation of use of a backup tunnel is detected for a primary tunnel, then a level of congestion of the path of the backup tunnel may be determined. In response to the level being greater than a threshold, a head-end node of the primary tunnel is triggered to reroute the primary tunnel (e.g., requesting to a path computation element). Conversely, in response to the level not being greater than the threshold, the backup tunnel is allowed to remain activated.
摘要:
In one embodiment, a device (e.g., a path computation element, PCE) monitors a tunnel set-up failure rate within a computer network, and determines whether to adjust an accuracy of routing information based on the tunnel set-up failure rate. For instance, the tunnel set-up failure rate being above a first threshold indicates a need for greater accuracy. In response to the tunnel set-up failure rate being above the first threshold, the device may then instruct one or more routers to shorten their routing update interval in the computer network.
摘要:
In one embodiment, a path computation element (PCE) in a computer network receives one or more path computation requests (PCReqs), and records a time of each PCReq and the corresponding requested bandwidth. Based on this information, the PCE may determine a traffic profile of the computer network, and may augment a traffic engineering database (TED) with requested bandwidth according to time based on the traffic profile. As such, prior to a particular time, the PCE may determine placement of tunnels within the traffic profile for the particular time.
摘要:
A technique configures an intermediate network node to automatically determine whether a route advertised by a routing protocol is important for fast convergence in a computer network. As used herein, an important route needed for fast convergence is a route advertised by the routing protocol, such as an exterior gateway routing protocol, as a next-hop address, since external connectivity relies on such a route. A routing information base process executing on the node stores the advertised route and, notably, interacts with an interior gateway routing protocol (IGP) process executing on the node to identify the route as an important route. Identification of an important route, in turn, allows IGP to process the route in a high priority fashion, thereby facilitating fast convergence.
摘要:
In one embodiment, a particular device in a computer network maintains a locally owned tunnel-state table, and joins a distributed hash table (DHT) ring. In addition, the locally owned tunnel-state table is shared with other devices of the DHT ring to establish a DHT-owned tunnel-state table. The particular device (and other devices) determines ownership of link-state advertisements (LSAs) for a specific portion of a traffic engineering database (TED) according to the DHT ring. As such, when the particular device (or any device) computes a path for a tunnel using a local TED, the particular device may request permission to use resources along the computed path that were advertised in particular LSAs from owners of those particular LSAs when not owned by the particular device.
摘要:
A technique for calculating local repair paths through a computer network using one or more dynamically measured parameters in place of, or in addition to, statically assigned cost metrics. The dynamically measured parameters include various statistical measures of resources and attributes associated with data links and/or network nodes in the computer network. In operation, an intermediate node monitors a set of local link and/or node parameters. The node may generate an advertisement in response to at least one of its monitored parameters crossing a predetermined threshold value or changing value by a predetermined percentage or amount. The advertisement is “flooded” so as to advertise the dynamically measured parameter value to other neighboring intermediate nodes. After receiving the advertisement, each node may recalculate one or more local repair paths based on the advertised parameter value. The node may utilize a recalculated repair path if it provides an appreciably lower-cost path, e.g., by a predetermined percentage, as compared with the currently deployed repair path.
摘要:
A system and method for advertising out-of-resources (OOR) conditions for entities, such as nodes, line cards and data links, in a manner that does not involve using a maximum cost to indicate the entity is “out-of-resources.” According to the technique, an OOR condition for an entity is advertised in one or more type-length-value (TLV) objects contained in an advertisement message. The advertisement message is flooded to nodes on a data network to inform them of the entity's OOR condition. Head-end nodes that process the advertisement message may use information contained in the TLV object to determine a path for a new label switched path (LSP) that does not include the entity associated with the OOR condition.
摘要:
In one embodiment, a stateful path computation element (PCE) in a computer network determines a need to route at least a threshold number of tunnels, and in response, triggers a routing update from a determined set of routers. Having updated the routing information and available network resources for the set of routers, the stateful PCE may then compute the tunnels based on the update.