Abstract:
Process and device for freezing substances contained in a receptacle, in which the receptacle (4) is placed on a support (7) and is moved along the support in a path. The support is a conveyor, preferably a vibratory conveyor, and is maintained partially immersed in a liquefied gas (13). The level of the liquefied gas (13) does not exceed the height of the substance in the receptacle (4). The vibratory conveyor comprises a vibrating trough (1) having two opposed walls (9) defining between them a guide channel (3) for the receptacles (4) and, on opposite sides, a chamber (10) for distribution of liquefied gas. A device (11) provides liquefied gas to each chamber (10). The bottom (7) of the vibrating trough (1) is of embossed sheet metal.
Abstract:
Quantities of liquid are distributed via a conduit (5) connected to a source (4) of the liquid, by periodically opening and closing a closure member (7) disposed in the conduit, and injecting, during a predetermined period, immediately after the 5 closing of the closure member (7), a quantity of gas into the conduit portion (6)immediately downstream of the closure member. The duration of the cycle between two successive openings of the closure member (7)is less than 0.1 second. The liquid is an inert liquefied gas, e.g. nitrogen or argon. The injected gas is the same as the liquefied gas and comes from a same cryogenic receptacle (1). The invention is useful for rendering inert or pressurizing containers of food products.
Abstract:
A plant for liquid-phase filtration of a cryogenic fluid comprising, in an ambient environment:a supply of a cryogenic fluid in liquid phase;a filtration component arranged between an inlet for feeding the cryogenic fluid and an outlet for use of the filtered cryogenic fluid, in which the filtration component filters microorganisms and/or particles and causes a head loss which is less than that which converts liquid phase to a solid or gaseous phase.
Abstract:
A solenoid valve is provided that includes a valve body (14) having an inlet duct (18), an outlet duct (24) and a plurality of sequentially operated solenoid actuators arranged in a circular configuration for selectively bringing these two ducts into communication with each other. The valve body includes at least two separate passages (19, 20) which connect the inlet duct to the outlet duct, and each of the solenoid actuators operates to periodically and selectively close off one of said passages. The solenoid valve finds particular application in inerting and pressurizing bottles containing still liquids with nitrogen.
Abstract:
A head (14) intended to be mounted on the end of a transfer line comprising a downstream outlet orifice (39) for liquid. The device comprises an insulating central nozzle (40) in which there is formed a through-opening (44, 45) for the passage of the liquid, an outer chassis (56, 58) surrounding the central nozzle (40) and in which the latter can slide, means (16) of securing the chassis and the transfer line (12) together, and means (84) of elastic return which, in service, press the upstream end (45) of the through-opening (44, 45) of the nozzle against the periphery (38) of the downstream orifice (39) of the transfer line (12). Application to the distribution of liquid nitrogen into cans of preserves.
Abstract:
A sterilizable installation for supplying at least one dose of a cryogenic liquid to a use station, wherein said installation comprises, along a fluid transfer line; a source of a first cryogenic liquid; a reservoir, suitable for temporary storage of the first cryogenic liquid, comprising a plural number of parts which are assembled using welds executed according to welding techniques that produce total penetration with no lap between two welded parts, such that the reservoir does not include rough spots or other sites of bacterial contamination and providing resistance to temperature fluctuations; and means for withdrawing, in continuous or discontinuous fashion, the first liquid from the reservoir to supply the use station.
Abstract:
A device for recycling a cryogenic liquid in a circuit (1) comprising at least one section (2) substantially at ambient pressure, the device comprising: a) a first cryogenic reservoir (4) to recover the liquid at the outlet of the section, this reservoir being provided with structure (4.sub.3, 6.sub.1, 7.sub.1, 8.sub.1) to pressurize the recovered liquid, b) a second cryogenic reservoir (5) continuously pressurized in operation and connected to the circuit (1) upstream of the section (2) open to the air to supply it with pressurized cryogenic liquid, the second reservoir being in selective fluid communication (16) with the first reservoir, and c) a device (12) responsive to a predetermined relationship of the levels of filling of the two reservoirs selectively to actuate the pressurization structure (4.sub.3, 6.sub.1, 7.sub.1, 8.sub.1) of the first reservoir (4) so as to transfer into the second reservoir (5) cryogenic liquid contained in the first reservoir.