Abstract:
Approaches are described for generating an initial reconstruction of CT data acquired using a wide-cone system. The initial reconstruction may be processed (such as via a non-linear operation) to correct frequency omissions and/or errors in the reconstruction. Corrected frequency information may then be added to the reconstruction to improve the reconstructed image.
Abstract:
A method for analytically reconstructing a multi-axial computed tomography (CT) dataset, acquired using one or more longitudinally-offset x-ray beams emitted from multiple x-ray sources is provided. The method comprises acquiring one or more CT axial projection datasets, wherein the CT axial projection datasets are acquired using less than a full scan of data. The method further comprises reconstructing the CT axial projection datasets to generate a reconstructed image volume. The reconstruction comprises back projecting one or more voxels comprising the multi-axial CT dataset, along one or more projection views, based upon a cone-angle weight determined for the voxels, wherein the cone-angle weight for the voxels is determined along a longitudinal direction.
Abstract:
A method for analytically reconstructing a multi-axial computed tomography (CT) dataset, acquired using one or more longitudinally-offset x-ray beams emitted from multiple x-ray sources is provided. The method comprises acquiring one or more CT axial projection datasets, wherein the CT axial projection datasets are acquired using less than a full scan of data. The method further comprises reconstructing the CT axial projection datasets to generate a reconstructed image volume. The reconstruction comprises backprojecting one or more voxels comprising the multi-axial CT dataset, along one or more projection views, based upon a cone-angle weight determined for the voxels, wherein the cone-angle weight for the voxels is determined along a longitudinal direction.
Abstract:
Systems and methods are provided for acquiring and reconstructing projection data that is mathematically complete or sufficient using a computed tomography (CT) system having stationary distributed X-ray sources and detector arrays. In one embodiment, a non-sequential activation is employed to acquire mathematically complete or sufficient projection data. In another embodiment, a distributed source is provided as a generally semicircular segment. In such an embodiment, an alternating activation scheme may be employed to allow one or more helices of image data to be acquired.
Abstract:
Algorithms are disclosed that recombine acquired data so as to generate a substantially uniform and complete set of frequency data where frequency data might otherwise be incomplete. This process, or its equivalent, may be accomplished in a computationally efficient manner using filtering steps in one or both of the reconstruction space and/or the post-processing space.
Abstract:
Systems and methods are provided for acquiring and reconstructing projection data that is mathematically complete or sufficient using a computed tomography (CT) system having stationary distributed X-ray sources and detector arrays. In one embodiment, a non-sequential activation is employed to acquire mathematically complete or sufficient projection data. In another embodiment, a distributed source is provided as a generally semicircular segment. In such an embodiment, an alternating activation scheme may be employed to allow one or more helices of image data to be acquired.
Abstract:
Systems and methods are provided for acquiring and reconstructing projection data using a computed tomography (CT) system having stationary distributed X-ray sources and detector arrays. In one embodiment, a non-sequential activation of X-ray source locations on an annular source is employed to acquire projection data. In another embodiment, a distributed source is tilted relative to an axis of the scanner to acquire the projection data. In a further embodiment, a plurality of X-ray source locations on an annular source are activated such that the aggregated signals correspond to two or more sets of spatially interleaved helical scan data.
Abstract:
Systems and methods are provided for acquiring and reconstructing projection data that is mathematically complete or sufficient using a computed tomography (CT) system having stationary distributed X-ray sources and detector arrays. In one embodiment, a distributed source is provided as arcuate segments offset in the X-Y plane and along the Z-axis.
Abstract:
A CT imaging system includes a rotatable gantry having an opening to receive an object to be scanned. A plurality of x-ray emission sources are attached to the rotatable gantry, each x-ray emission source configured to emit x-rays in a conebeam toward the object. The CT imaging system also includes a plurality of x-ray detector arrays attached to the gantry and positioned to receive x-rays passing through the object. At least one x-ray detector array of the plurality of x-ray detector arrays is configured to receive x-rays from more than one x-ray emission source.
Abstract:
A technique is provided for imaging a field of view using an X-ray source comprising two or more emission points. The two or more emission points may be independently operated. Independent operation of the two or more emission points in performed in accordance with a list of commands that specifies the operation of the emission points. The list of commands, in one embodiment, is stored in a sequence buffer. In other embodiments, the list of commands is generated for a given usage, without being stored in a sequence buffer.