摘要:
Gradient-index (GRIN) lens fabrication employing laser pulse width duration control, and related components, systems, and methods are disclosed. GRIN lenses can be fabricated from GRIN rods by controlling the pulse width emission duration of a laser beam emitted by a laser to laser cut the GRIN rod, as the GRIN rod is disposed in rotational relation to the laser beam. Controlling laser pulse width emission duration can prevent or reduce heat accumulation in the GRIN rod during GRIN lens fabrication. It is desired that the end faces of GRIN lenses are planar to facilitate light collimation, easy bonding or fusing of the GRIN lens to optical fibers to reduce optical losses, polishing to avoid spherical aberrations, and/or cleaning the end faces when disposed in a fiber optic connector, as non-limiting examples.
摘要:
A pre-terminated optical fiber assembly with a ferrule having front and rear opposed faces and at least one fiber bore defined longitudinally therethrough includes a glass optical fiber is disposed within the at least one fiber bore with the fiber fused to the ferrule at a location at least 1 mm deep inside the bore. A method for fusing is also disclosed. The ferrule 14 is desirably composed of an inorganic composite material, the composite comprising a material gradient from at least 75% by volume of a first inorganic material to at least 75% by volume of second inorganic material in the radially inward direction, where the first inorganic material has a fracture toughness of at least 1 MPa•m1/2, and the second inorganic material has a softening point of no greater than 1000° C., desirably no greater than 900° C.
摘要:
Laser-based methods of stripping different types of fiber optic cables (100) are disclosed. The method includes directing a focused laser beam (202) onto the cable's protective cover (114). The method also includes moving the fiber optic cable relative to the focused laser beam in a direction substantially along a central axis (AC) to form a substantially axially oriented groove (250) in the protective cover, wherein the groove does not reach one or more optical fibers (110) carried by the cable. The method can further include opening the protective cover at the groove to form a split protective cover portion (114S), and removing the split protective cover portion from the fiber optic cable. Methods of stripping a cable by forming two grooves in the protective cover using two focused laser beams are also disclosed.