Abstract:
A small critical dimension element, such as a heater for an ovonic unified memory, may be formed within a pore by using successive sidewall spacers. The use of at least two successive spacers enables the limitations imposed by lithography and the limitations imposed by bread loafing be overcome to provide reduced critical dimension elements.
Abstract:
A phase change memory formed by a plurality of phase change memory devices having a chalcogenide memory region extending over an own heater. The heaters have all a relatively uniform height. The height uniformity is achieved by forming the heaters within pores in an insulator that includes an etch stop layer and a sacrificial layer. The sacrificial layer is removed through an etching process such as chemical mechanical planarization. Since the etch stop layer may be formed in a repeatable way and is common across all the devices on a wafer, considerable uniformity is achieved in heater height. Heater height uniformity results in more uniformity in programmed memory characteristics.
Abstract:
A phase change memory formed by a plurality of phase change memory devices having a chalcogenide memory region extending over an own heater. The heaters have all a relatively uniform height. The height uniformity is achieved by forming the heaters within pores in an insulator that includes an etch stop layer and a sacrificial layer. The sacrificial layer is removed through an etching process such as chemical mechanical planarization. Since the etch stop layer may be formed in a repeatable way and is common across all the devices on a wafer, considerable uniformity is achieved in heater height. Heater height uniformity results in more uniformity in programmed memory characteristics.
Abstract:
A small critical dimension element, such as a heater for an ovonic unified memory, may be formed within a pore by using successive sidewall spacers. The use of at least two successive spacers enables the limitations imposed by lithography and the limitations imposed by bread loafing to be overcome to provide reduced critical dimension elements.
Abstract:
Erosion of chalcogenides in phase change memories using ovonic threshold switch selectors can be reduced by controlling columnar morphology in electrodes used in the ovonic threshold switch. The columnar morphology may cause cracks to occur which allow etchants used to etch the ovonic threshold switch to sneak through the ovonic threshold switch and to attack chalcogenides, either in the switch or in the memory element. In one embodiment, the electrode may be split into two metal nitride layers separated by an intervening metal layer.
Abstract:
A method, device and system are provided for programming a flash memory device, the method including executing a bit line setup operation, and executing a channel pre-charge operation simultaneously with the bit line setup operation, the channel pre-charge operation including applying a channel pre-charge voltage to all word lines; and the device including a voltage generator disposed for providing each of a program voltage, a read voltage, a pass voltage, and a channel pre-charge voltage, a high-voltage switch connected to the voltage generator and disposed for switchably providing one of the program voltage, read voltage, pass voltage, or channel pre-charge voltage, and control logic connected to the high-voltage switch and disposed for simultaneously executing a bit line setup operation and a channel pre-charge operation, the channel pre-charge operation comprising controlling the high-voltage switch to apply the channel pre-charge voltage to both selected and unselected word lines of the device.
Abstract:
Subject matter disclosed herein relates to a method of manufacturing a semiconductor integrated circuit device, and more particularly to a method of fabricating a phase change memory device.