Abstract:
A WSN has multiple sensor nodes, a bi-directional gateway sensor node, and a server. The WSN also includes circuitry configured to process a route request message from an origination sensor node to a destination sensor node. A message packet of each of the sensor nodes includes a minimum energy field, a minimum energy harvesting rate field, and a sum of energy field. The circuitry is also configured to determine a new delivery route based upon comparing a minimum energy and a minimum energy harvesting rate of an instant sensor node with a minimum energy and a minimum energy harvesting rate contained in the message packet, and select a lower minimum energy and a lower minimum energy harvesting rate from the instant sensor node or the message packet. The circuitry is also configured to broadcast the lower minimum energy and the lower minimum energy harvesting rate throughout the WSN.
Abstract:
A system and method for a sensor-based monitoring that includes a computer system, smart nodes, and an RFID reader device. The system collects data to measure health condition of a plurality of people at an event. The computer system determines candidate cluster heads with above average battery level. The smart nodes determine a subset of the candidate cluster heads that are within communication range, retrieve battery level of the determined subset of cluster heads, and select a cluster head having the highest battery level. The selected cluster head announces selection as the selected cluster head, receives requests to join a cluster, reads sensor data of the body sensor in each joined smart sensor as collective sensor data for the cluster, and sends the collective sensor data to the computer system via the RFID reader. Information is collected from smart nodes in an efficient manner for large-scale monitoring systems.
Abstract:
A method, network system, and non-transitory computer readable medium that arrange a set of wireless mobile devices into a two-level clustering structure including a cluster in a first-level and a cluster in the second-level, based on node status registered and algorithm preinstalled in a back-end server, where each of the set of wireless mobile devices is assigned either one of a slave member of a cluster in the first-level, a master of a cluster in the first-level where the master is also a member of a cluster in the second-level, or a super master of a cluster in the second-level where a master of a cluster in the first-level is assigned as the super master. The two-level clustering structure is periodically updated. Only the super-masters are configured to communicate with the back-end server via a long-range connection to WLAN, while a short-range wireless interface is used for internal communications.
Abstract:
A wireless sensor network (WSN) includes a sensor node cluster having a plurality of sensor nodes positioned along a section of a pipeline; a base station; a designated cluster head for the sensor node cluster, the designated cluster head configured to forward sensor data packets towards the base station; and a server having circuitry. The circuitry is configured to determine when the designated cluster head has a battery energy level below a predetermined level, elect a replacement cluster head for the designated cluster head when the battery energy level is below the predetermined level, and forward an energy status of the designated cluster head to the replacement cluster head.
Abstract:
Aspects of the disclosure provide a method for selecting a relay node at a first node for transmitting a packet from the first node to a destination node in a wireless sensor network that includes a plurality of nodes. The method can include establishing a transmission angle within which the relay node is preferentially selected, wherein a bounding box surrounding the destination node is between a first side and a second side of the transmission angle, and selecting a second node having a highest remaining energy level among energy levels of neighbor nodes of the first node within the transmission angle to be the relay node. In one example, the candidate nodes for selecting the second node have a remaining energy level above a threshold.
Abstract:
A dynamic multi-objective task allocation system within robotic networks that assigns tasks in real-time as they are detected, the system including a sensing device that detects a trigger event, the trigger event being associated with a task to be performed, and transmits a broadcast signal to a designated robotic network, the robotic network including one or more robots, the broadcast signal including information associated with the task to be performed, the trigger event, the task to be performed, and a location where the task is to be performed; and a distribution robot that receives broadcast signal from the sensing device, assigns itself a self-score associated with performing the task, transmits, to one or more receiving robots within the robotic network, a request for submission of an assessment score of each one of the one or more robots, and determines which robot is assigned to perform the task.
Abstract:
A method for evaluating performance of a sensor network. The method includes selecting, a sensor distribution pattern for a geographical region and determining a location for a base station. A plurality of sensor clusters are generated, each sensor cluster being formed by one of a first and second grouping mechanism. Further, the method allocates, for each sensor a time-slot within a time-frame to transmit a data packet from the sensor to the base station, and evaluates the performance of the first grouping mechanism and the second grouping mechanism for the selected sensor distribution pattern and base station location, by computing at least a ratio of delivered data packets to the base station to a total energy consumption, and a first delay and a second delay incurred by each data packet.
Abstract:
A robotic system for surface marking comprises a plotter configured to move along x, y and z axes; a chassis configured to hold a plurality of components of the robotic system; one or more ultrasonic sensors mounted on a periphery of the chassis and configured to detect obstacles during movement of the robotic system; at least three drive members coupled to a motor unit configured to control the movement of the robotic system on a surface; and a computer processor having program instructions for controlling the robotic system. The movement of the robotic system is controlled with the computer processor so as to move the plotter and form a marking on the surface based on a pre-determined surface marking stored in a memory of the computer processor.
Abstract:
A wireless sensor network (WSN) includes a sensor node cluster having a plurality of sensor nodes positioned along a section of a pipeline; a base station; a designated cluster head for the sensor node cluster, the designated cluster head configured to forward sensor data packets towards the base station; and a server having circuitry. The circuitry is configured to determine when the designated cluster head has a battery energy level below a predetermined level, elect a replacement cluster head for the designated cluster head when the battery energy level is below the predetermined level, and forward an energy status of the designated cluster head to the replacement cluster head.
Abstract:
The present disclosure relates to a clustering approach for sensor nodes of a wireless sensor network. This clustering approach, equal distance different members, balances the power burden amongst sensor nodes by deriving an optimal number of sensor nodes at each segment of a length. To this end, the present disclosure describes a linear wireless sensor network wherein the distance between adjacent cluster heads is equal while the number of and distance between sensor nodes in each cluster is different. A power consumption model is derived to aid in the determination of the optimal number of sensor nodes within each cluster. Following evaluation of the cluster approach in comparison with previously described approaches, the present disclosure is observed to improve network longevity and reduce power consumption by deliberately increasing the density of sensor nodes nearest a base station.