Abstract:
An imaging system (10) analyzes airways of a patient. The system (10) includes a hardware phantom (50) including tubes (54) representative of airways. The tubes (54) include different lumen sizes and/or wall thicknesses. The system further includes an imaging scanner (12) for scanning a region of interest (ROI), including the airways, and the hardware phantom (50) to create raw image data. At least one processor (32) is programmed to at least one of: (1) correct measurements of walls of the airways based on measurements of lumen size and/or wall thickness of the tubes (54) and known lumen size and/or wall thickness of the tubes (54); and (2) generate an image of the ROI in which color and/or opacity of the airways are based on a comparison of images or maps of the tubes (54) and images or maps of the airways. A corresponding method is also provided.
Abstract:
A model-based segmentation system includes a plurality of clusters (48), each cluster being formed to represent an orientation of a target to be segmented. One or more models (140) are associated with each cluster. The one or more models include an aspect associated with the orientation of the cluster, for example, the appearance of the target to be segmented. A comparison unit (124), configured in memory storage media, is configured to compare an ultra-sound image to the clusters to determine a closest matching orientation and is configured to select the one or more models based upon the cluster with the closest matching orientation. A model adaptation module (126) is configured to adapt the one or more models to the ultrasound image.
Abstract:
The present invention relates to devices, system and method for detecting gestures. The devices, systems and methods uses optically shape sensing devices for tracking and monitoring users. This allows unhindered, robust tracking of persons in different setting. The devices, systems and methods are especially useful in health care institutions.
Abstract:
An imaging system (10) analyzes airways of a patient. The system (10) includes a hardware phantom (50) including tubes (54) representative of airways. The tubes (54) include different lumen sizes and/or wall thicknesses. The system further includes an imaging scanner (12) for scanning a region of interest (ROI), including the airways, and the hardware phantom (50) to create raw image data. At least one processor (32) is programmed to at least one of: (1) correct measurements of walls of the airways based on measurements of lumen size and/or wall thickness of the tubes (54) and known lumen size and/or wall thickness of the tubes (54); and (2) generate an image of the ROI in which color and/or opacity of the airways are based on a comparison of images or maps of the tubes (54) and images or maps of the airways. A corresponding method is also provided.
Abstract:
The invention provides for a medical imaging system (700) comprising: a memory (734) for storing machine executable instructions (740), a display (732) for rendering a user interface (800), and a processor (730). Execution of the machine executable instructions causes the processor to receive (1000) three dimensional medical image data (746) descriptive of a region of interest (709) of a subject (718). The region of interest comprises a spine (200). Execution of the machine executable instructions further causes the processor to receive (1002) a set of spinal coordinate systems (748) each descriptive of a location and an orientation of spinal vertebrae in the three dimensional medical image data. The set of spinal coordinate systems further comprises a set of spine centerline positions (102) each positioned on a spine centerline (108). Execution of the machine executable instructions further causes the processor to receive (1004) a mapping (750) between the set of spinal coordinate systems and a simplified coordinate system. The simplified coordinate system comprises a spinal height (300) descriptive of a position along the spine centerline. The simplified coordinate system further comprises a rotational orientation relative to a local vertebrae orientation. The simplified coordinate system further comprises an offset from the spine centerline. Execution of the machine executable instructions further cause the processor to repeatedly receive (1006) a simplified coordinate (752) of the simplified coordinate system from the user interface. Execution of the machine executable instructions further cause the processor to repeatedly calculate (1008) a spinal image rendering (754). Calculating the spinal image rendering comprises using the mapping to transform the simplified coordinate into the set of spinal coordinate systems to determine an image location in the three dimensional medical image data. Execution of the machine executable instructions further cause the processor to repeatedly render (1010) the spinal image rendering on the display.
Abstract:
The present invention provides an improved ultrasound imaging system arranged to evaluate a set of acquired 3D image data in order to provide a compounded 3D image of a fetus irrespective of its position and movement. This is achieved by providing an ultrasound imaging system comprising: an ultrasound probe having an ultrasound transducer array operable to acquire at different look directions a plurality of three dimensional (3D) ultrasound image frames of a volumetric region comprising a fetus; a compound image memory for storing the acquired plurality of the 3D ultrasound image frames and an articulated fetal model with a common fetal structure; an ultrasound image processor responsive to the plurality of 3D ultrasound image frames, said processor comprising a fetal segmentation unit arranged to segment each 3D image frame based on the articulated fetal model thereby providing a plurality of spatially related 3D images of the volumetric region; and an image quality analyzer coupled to the segmentation unit and arranged to determine, based on the articulated fetal model, an overall confidence value of the plurality of the 3D images, said image quality analyzer is further arranged to compare the overall confidence value with an image compounding threshold.
Abstract:
There is provided a computer implemented method (200) for medical image processing. The method comprises providing (202) a database of medical images and providing (204) an initial machine learning model which is trained for segmenting or classifying a medical feature in the medical images. The method also comprises extracting (206) a subset of medical images from the database based on a similarity score of the medical images and training (208) the machine learning model using the extracted subset of medical images in order to provide a refined machine learning model.
Abstract:
The invention relates to an apparatus configured to display an aortic valve image and an indicator when the aortic valve is in its open-state and/or when the valve is in its closed-state. The indicator is supposed to be in an overlay to the image of the aortic valve, such that a physician can see on the same display image the information needed to advance a guide wire or catheter through the aortic valve of a heart. This may prevent damaging ensures not to damage the aortic valve. The physician receives the relevant information, when the aortic valve is in its open-state and thus being in a state to be passed by the catheter. The information, whether the aortic valve is in its open-state or in its closed-state, corresponds to the systolic phase and the distal phase of the heart, respectively. The information, when the heart is in its systolic phase and when it is in the diastolic phase may be extracted from an ECG measurement. From the detection of these cardiac phases, the closed-state of the valve and/or the open-state of the valve can be estimated using general knowledge about flood flow during the cardiac cycle.
Abstract:
A system and method for shape sensing assistance in a medical procedure includes a three-dimensional image (111) of a distributed pathway system (148). A shape sensing enabled elongated device (102) is included for insertion into the pathway system to measure a shape of the elongated device in the pathway system. A pathway determination module (144) is configured to compute a planned path to a target in the three-dimensional image and compute permissible movements of the elongated device at diverging pathways in the pathway system to provide feedback for deciding which of the diverging paths to take in accordance with the planned path.
Abstract:
A system for generating ultrasound data in respect of an anatomical body being scanned makes use of a predetermined scan protocol, which specifies a sequence of types of ultrasound scan of structures of interest. These types may for example be different imaging modalities (static, dynamic, 2D, 3D etc.) which are most appropriate for viewing different structures within the anatomical body. From received ultrasound images, a model is used to identify the structures of interest within the ultrasound images. The best images for creating the types of scan of the protocol are then identified and a sequence is compiled of those best images. In this way, a sequence is created which combines different types of scan, in a structured way according to a predetermined protocol. This makes the analysis of the sequence most intuitive for a user, and simplifies comparison between different sequences.