Abstract:
A rotation angle detecting apparatus comprises a shaft portion space formed in a rotation shaft, a bearing holder space, a first condenser lens, a second condenser lens to face the first condenser lens, a detection pattern provided at a focal position of one of the first condenser lens and the second condenser lens, an image sensor provided at a focal position of the other of the first condenser lens and the second condenser lens, and an arithmetic unit for calculating an angle displacement of the rotation shaft. The arithmetic unit carries out a total circumferential scanning, extracts a frequency component, carries out a scanning of a reference designation pattern, and calculates the angle displacement of the rotation shaft based on a phase difference of the frequency component and the number of frequencies corresponding to a change in a position of the reference designation pattern.
Abstract:
The aerial photograph image pickup method comprises a first step of acquiring still images along an outward route and a return route respectively, a second step of preparing a stereo-image with regard to three images adjacent to each other in advancing direction, and of preparing another stereo-image by relative orientation on one more set of adjacent images and of preparing two sets of stereo-images, a third step of connecting two sets of stereo-images by using feature points extracted from a portion of an image common to the two sets of stereo-images, a step of connecting all stereo-images in the outward route direction and in the return route direction according to images acquired in the first step by repeating the second and third steps, and a step of selecting common tie points from the images adjacent to each other in the adjacent course and connecting the adjacent stereo-images in the course.
Abstract:
A spectral image sensor device comprises a first optical system 47 and 48 including an objective lens, a luminous fluxes selecting member 55 for allowing a part of the luminous fluxes to pass via the first optical system selectively, an optical member 58 where the luminous fluxes selecting member is disposed so as to be at focal position on an object side or approximately at focal position on an object side, and an interference membrane is formed, and wavelength range of the luminous fluxes for passing through the luminous fluxes selecting member is selected, depending on position of the luminous fluxes selecting member, a second optical system 49 for guiding the luminous fluxes toward the optical member, and an image sensor 52 for receiving a light in wavelength range as selected by the optical member.
Abstract:
An image acquiring device comprises a first camera 14 for acquiring video images, consisting of frame images continuous in time series, a second camera 15 being in a known relation with the first camera and used for acquiring two or more optical spectral images of an object to be measured, and an image pickup control device 21, and in the image acquiring device, the image pickup control device is configured to extract two or more feature points from one of the frame images, to sequentially specify the feature points in the frame images continuous in time series, to perform image matching between the frame images regarding the frame images corresponding to the two or more optical spectral images based on the feature points, and to synthesize the two or more optical spectral images according to the condition obtained by the image matching.
Abstract:
The invention provides a surveying instrument, which comprises a light emitting element for emitting a distance measuring light, a distance measuring light projecting unit for projecting the distance measuring light, a light receiving unit for receiving a reflected distance measuring light, a photodetection element for receiving the reflected distance measuring light and for producing a photodetection signal and a distance measuring unit for performing a distance measurement based on a light receiving result from the photodetection element, further comprises a first optical axis deflecting unit disposed on a projection optical axis of the distance measuring light for deflecting an optical axis of the distance measuring light at a deflection angle as required and in a direction as required, a second optical axis deflecting unit disposed on a light receiving optical axis for deflecting the reflected distance measuring light at the same deflection angle and in the same direction as the first optical axis deflecting unit and a projecting direction detecting unit for detecting a deflection angle and a deflecting direction by the first optical axis deflecting unit, wherein it is so arranged that the distance measuring light is projected through the first optical axis deflecting unit and the reflected distance measuring light is received by the photodetection element through the second optical axis deflecting unit and a three-dimensional data of a measuring point is obtained based on a distance measuring result of the distance measuring unit and a detection result of the projecting direction detecting unit.
Abstract:
The invention provides a surveying instrument, which comprises a light emitting element for emitting a distance measuring light, a distance measuring light projecting unit for projecting the distance measuring light, a light receiving unit for receiving a reflected distance measuring light, a photodetection element for receiving the reflected distance measuring light and for producing a photodetection signal and a distance measuring unit for performing a distance measurement based on a light receiving result from the photodetection element, further comprises a first optical axis deflecting unit disposed on a projection optical axis of the distance measuring light for deflecting an optical axis of the distance measuring light at a deflection angle as required and in a direction as required, a second optical axis deflecting unit disposed on a light receiving optical axis for deflecting the reflected distance measuring light at the same deflection angle and in the same direction as the first optical axis deflecting unit and a projecting direction detecting unit for detecting a deflection angle and a deflecting direction by the first optical axis deflecting unit, wherein it is so arranged that the distance measuring light is projected through the first optical axis deflecting unit and the reflected distance measuring light is received by the photodetection element through the second optical axis deflecting unit and a three-dimensional data of a measuring point is obtained based on a distance measuring result of the distance measuring unit and a detection result of the projecting direction detecting unit.
Abstract:
A surveying apparatus comprises an observation optical system having an image sensor for outputting a digital image signal and a zoom optical system, a reference-pattern projection optical system for making a reference pattern enter the observation optical system in an infinity state and for forming an image on the image sensor, a rotation mechanism capable of rotating in two directions, a horizontal angle detector and a vertical angle detector for detecting a horizontal angle and a vertical angle of rotation in the two directions of the rotation mechanism, and an arithmetic control unit. The arithmetic control unit measures the horizontal angle and the vertical angle of a sighting point based on detection results of the horizontal angle detector and the vertical angle detector and based on a difference between the reference pattern on the image sensor and the sighting point of the observation optical system.
Abstract:
An image pickup device, which comprises an optical characteristics changing unit (15), an optical system (45) containing an objective lens (47) and for leading a light from the objective lens to the optical characteristics changing unit, and an image pickup element (52) for receiving a light via the optical characteristics changing unit, wherein the optical characteristics changing unit has two or more dividing units, and has a configuration where one of the dividing units is selectively disposed along an optical path, and the dividing unit has a first region to select a specific wavelength from the light coming from the optical system and a second region where optical characteristics of the light from the optical system are not changed.
Abstract:
The invention provides an electro-optical distance meter comprising a light emitting element for emitting a distance measuring light, signal generators for generating two or more proximity frequencies, a modulation signal in which the two or more proximity frequencies are intermitted respectively and converted to pulses with a predetermined width, a projecting optical system for sequentially switching over and projecting intermittent modulated distance measuring light as converted to pulses with predetermined width by the modulation signal, a photodetection unit for receiving a reflected distance measuring light from an object to be measured and producing an intermittent photodetection signal with a predetermined pulse width, a reference signal generator for issuing reference frequency signals having a difference of a predetermined frequency respectively, a frequency converting unit for performing frequency conversion by mixing the intermittent photodetection signals from the photodetection unit and the reference frequency signals, corresponding to each intermittent frequency signals respectively and obtaining intermittent conversion signals with a pulse width, and an arithmetic control unit, wherein the pulse width of the intermittent photodetection signal is set up so as to be longer in a time duration than a period of the intermittent conversion signal, and in a case where the object to be measured is a moving object, the period of the intermittent photodetection signal is set to such speed that a phase change of the intermittent conversion signal due to moving of the moving object can be negligible, wherein the arithmetic control unit is configured so as to calculate a precise measurement distance value by obtaining the phase of the intermittent photodetection signal with respect to the two or more proximity frequencies, to calculate a coarse measurement distance value by obtaining a phase difference between the intermittent conversion signals, and to determine a distance by combining the coarse measurement distance value and the precise measurement distance value.
Abstract:
An aerial photographing system, comprising a flying vehicle being remotely controlled, a camera (7, 8) tiltably supported in any direction via a gimbal (25), a retro-reflector (9) tilting integrally with the camera, being set in a known relation with the camera and used as an object to be measured, and a total station (3) for tracking the retro-reflector and for measuring position of the retro-reflector.