摘要:
Techniques for reducing the number of bits needed to specify the best precoding vector for each mobile station in a wireless communication network that employs multi-point transmission are disclosed. An exemplary method begins with the estimation of path loss between a mobile station and each of a plurality of geographically separated transmitter sites, each transmitter site having at least one transmitter antenna. Based on the estimated path losses, one of a plurality of pre-determined subsets (codebooks) of a pre-determined set of antenna precoding vectors is selected. A group index identifying the selected subset is then transmitted to the mobile station. Subsequently, a vector index is received from the mobile station, the vector index corresponding to a precoding vector in the selected subset, and data is transmitted to the mobile station, using the precoding vector applied to the transmitter antennas at the plurality of transmitter sites.
摘要:
A mobile communication system network node (NN) that serves user equipments (UEs) has fewer orthogonal reference signals (RSs) than a maximum number of UE antenna ports (APs) that can be served by the NN. A channel quality of a channel between the AP and the network node is ascertained for each of the APs. Whenever a number of APs of UEs served by the NN exceeds the number of RSs, all RSs are allocated to a subset of all of the APs by means of an allocation process such that: each RS is allocated to only one of the APs; each AP has no more than one RS allocated to it; and allocation decisions are a function of the channel qualities of the respective APs such that the higher the channel quality, the higher priority the corresponding AP is given as a candidate for receiving an RS allocation.
摘要:
Techniques for reducing the number of bits needed to specify the best precoding vector for each mobile station in a wireless communication network that employs multi-point transmission are disclosed. An exemplary method begins with the estimation of path loss between a mobile station and each of a plurality of geographically separated transmitter sites, each transmitter site having at least one transmitter antenna. Based on the estimated path losses, one of a plurality of pre-determined subsets (codebooks) of a pre-determined set of antenna precoding vectors is selected. A group index identifying the selected subset is then transmitted to the mobile station. Subsequently, a vector index is received from the mobile station, the vector index corresponding to a precoding vector in the selected subset, and data is transmitted to the mobile station, using the precoding vector applied to the transmitter antennas at the plurality of transmitter sites.
摘要:
Radio transmission in an Orthogonal Frequency Division Multiplex, OFDM, based cellular wireless radio transmission system, wherein radio access equipment of the system connects to multiple geographically spread radio antennas of a Distributed Antenna System, DAS, for transmitting to and receiving radio signals from user equipment. Transmit timings for radio transmission between the user equipment and the antennas of the DAS are established. The radio transmission is scheduled based on the established transmit timings.
摘要:
Accurate downlink channel estimates are calculated based on infrequently transmitted Channel State Information (CSI) feedback data from a UE 20. A plurality of non-uniformly spaced digital CSI feedback samples, representing the frequency response of a downlink communication channel, is received from the UE. The received CSI feedback samples are demodulated and inverse quantized. A time domain tap delay channel model is generated from the inverse quantized CSI feedback samples. The time domain tap delay channel model may be frequency-transformed to obtain a reconstructed frequency response of the downlink communication channel in the frequency domain. Alternatively, channel delays may be estimated based on prior delays and/or known references signals transmitted on the uplink. Channel estimates between CSI reporting instances may be predicted, such as by a sample & hold or a linear predictor. The delays may be presumed fixed, and Kalman filter coefficients evolved over time.
摘要:
The present invention involves demodulation of radio signals modulated with M-ary modulation in the presence of intersymbol interference distortion. The invention presents a method for reducing the number of multiplications needed to implement a maximum-likelihood-sequence-estimation (MLSE) equalizer for signals modulated with M-ary modulation. In exemplary embodiments of the present invention, the number of multiplications is reduced by pre-computing certain values needed for the determination of the branch metric and storing these pre-computed values in a product table. When a branch metric computation is to be made, whether it is an Euclidean branch metric computation or an Ungerboeck branch metric computation, certain multiplication operations are replaced by simple table look-up operations. As a result, the power efficiency and speed of the system are increased. Any receiver that demodulates signals that are modulated with M-ary modulation can be implemented using the present invention. The resulting demodulator will have a lower complexity than existing demodulators.
摘要:
Measurements for identifying pre-candidate cells are made by a wireless transmit/receive unit (WTRU) operating with a switched beam antenna in a wireless communication system. The switched beam antenna is a smart antenna generating a plurality of directional beams and an omni-directional beam. The WTRU measures signals from cells not in an active set of cells to define a pre-candidate set of cells. Measured signals from cells in the pre-candidate set of cells are compared to a threshold, and the corresponding cells are moved from the pre-candidate set of cells to a candidate set of cells based upon the comparison to the threshold. A measurement report is then sent to the network.
摘要:
A reduced search symbol estimation algorithm includes a forward recursion, a backward recursion, and a combining step. To reduce complexity, during the forward and backward recursions, the number of survivor states retained at each stage is less than the total number of states of the trellis. The survivor states are selected from a group of candidate states, that are connected by branches to survivors from the previous stage of the recursion. The decoder compares the accumulated path metrics for each candidate state and retains a specified number of states that is less than the total possible number of states. For the forward recursion, the retained states or survivor states, denoted as Qk, are stored along with the corresponding state metrics. For the backward recursion, the retained states, denoted as Rk, are stored along with the corresponding state metrics. During the combining step, the computation of a soft value is restricted to branches (s′,s) connecting survivor states s′ and s in the forward and backward recursions respectively.
摘要:
Radio transmission in an Orthogonal Frequency Division Multiplex, OFDM, based cellular wireless radio transmission system, wherein radio access equipment of the system connects to multiple geographically spread radio antennas of a Distributed Antenna System, DAS, for transmitting to and receiving radio signals from user equipment. Transmit timings for radio transmission between the user equipment and the antennas of the DAS are established. The radio transmission is scheduled based on the established transmit timings.
摘要:
Precoder weights employed at a base station which coordinates with other base stations to form a super-cell are determined by: (a) determining an initial downlink precoding matrix at the base station for a mobile station serviced by the base station in the super-cell; (b) revising a downlink receiver matrix associated with the mobile station based on the initial downlink precoding matrix; (c) transforming the downlink receiver matrix to an uplink precoder matrix associated with the mobile station; (d) revising an uplink receiver matrix associated with each base station in uplink communication with the mobile station based on the uplink precoder matrix associated with the mobile station; and (e) revising the initial downlink precoding matrix by transforming the uplink receiver matrix to a revised downlink precoding matrix. Steps (b), (c), (d) and (e) are repeated for a particular number of iterations to determine a final downlink precoding matrix for the mobile station.