摘要:
Fe--Cr--Al alloy foil having high oxidation resistance for a substrate catalytic converter. The alloy foil contains about: C: 0.02 wt. % or less, N: 0.02 wt. % or less, Si: 1.0 wt. % or less, Mn: 1.0 wt. % or less, Cr: from 15 to 26 wt. %, Al: from 4.5 to 8.0 wt. %, Sm: from 0.05 to 0.30 wt. %, Zr: from 0.01 to 0.10 wt. %, and Hf: 0.005 wt. % to 0.10 wt. %, the balance consisting of Fe and incidental impurities.
摘要:
A ferritic stainless steel sheet having excellent corrosion resistance and a method of manufacturing the steel sheet are provided. Specifically, the ferritic stainless steel sheet of the invention contains C of 0.03% or less, Si of 1.0% or less, Mn of 0.5% or less, P of 0.04% or less, S of 0.02% or less, Al of 0.1% or less, Cr of 20.5% to 22.5%, Cu of 0.3% to 0.8%, Ni of 1.0% or less, Ti of 4×(C %+N %) to 0.35%, Nb of less than 0.01%, N of 0.03% or less, and C+N of 0.05% or less, and has the remainder including Fe and inevitable impurities, wherein 240+35×(Cr %−20.5)+280×{Ti %−4×(C %+N %)}≧280 is satisfied.
摘要:
A stainless steel separator having gas channels including grooves and projections for fuel cells. The separator has a composition including about 0.03 mass percent or less of carbon; about 0.03 mass percent or less of nitrogen, the total content of carbon and nitrogen being about 0.03 mass percent or less; about 16 mass percent to about 45 mass percent chromium; about 0.5 mass percent to about 3.0 mass percent molybdenum; and the balance being iron and incidental impurities. The separator has a contact resistance of about 100 m&OHgr;·cm2 or less. Preferably, the projections have an arithmetic average surface roughness Ra in the range of about 0.01 to about 1.0 &mgr;m and a maximum height Ry in the range of about 0.01 to about 20 &mgr;m. The stainless steel separator preferably further includes about 0.001 to about 0.1 mass percent silver. A fuel cell including this separator exhibits a stable output voltage for a long period of time.
摘要:
A highly corrosion resistant chromium-containing steel has corrosion resistance and oxidation resistance comparable or superior to those of low Cr-stainless steel (Cr content: 11-13% by weight), and excellent intergranular corrosion resistance not attainable in existing chromium containing steels. However, the steel has such a low Cr content that it is not classified as a stainless steel. A preferred composition on a weight % basis, is: C: 0.015% or less, Si: from more than 1.0% to 2.0%, Mn: 0.5% or less, P: 0.05% or less, S: 0.01 or less, Ni: 0.015% or less, provided that sum of the C content and the N content (C+N): 0.020% or less. Ti: from more than 0.30% to 0.50% in which the contents for Cr, Ti, C and N, that is, [Cr], [Ti], [C] and [N] satisfying the following relation: [Ti]/([C]+[N])≧64−4×[Cr], balance of Fe and incidental impurities.
摘要:
A rapidly solidified Fe-Cr-Al alloy foil having excellent anti-oxidation properties, the foil essentially consisting of Cr: about 5 to 30 wt %, Al: about 2 to 15 wt %, Si: about 1.5 to 3 wt %, and REM (Y, Ce, La, Pr, Nd): about 0.07 to 2.0 wt %, the balance being Fe and impurities. The foil may further contain about 0.001 to 0.5 wt % of at least one element selected from the group consisting of Ti, Nb, Zr and V. The foil has a grain size of not more than about 10 .mu.m. Preferably, the rapidly solidified alloy foil has a thickness of about 20 to 200 .mu.m.
摘要:
A magnetic recording material comprising a non-magnetic flexible support having thereon a magnetic recording layer comprising a ferromagnetic powder dispersed in a binder, the surface of the non-magnetic flexible support having the magnetic recording layer thereon satisfying an S-factor expressed by the following relationship (I-1) ##EQU1## wherein S.sub.1 is the surface roughness in .mu.m of the surface of the non-magnetic flexible support having the magnetic recording layer thereon and d is the thickness in .mu.m of the magnetic recording layer, with the thickness (d) of the magnetic recording layer being about 5 .mu.m or less, and the back surface of the non-magnetic flexible support opposite that having the magnetic recording layer thereon satisfying an S-factor expressed by the following relationship (I-2) ##EQU2## wherein S.sub.2 is the surface roughness in .mu.m of the back surface of the non-magnetic support opposite that having the magnetic recording layer thereon and d is as described above.