Abstract:
A lightweight cutting tool, such as a reamer, includes a front cutting body, a front cutting ring, a center tube, a rear cutting ring and a rear machine connection member. An arm assembly of the front and rear cutting heads includes one or more leading arms, one or more trailing arms and a cutting head supported by the leading and trailing arms. The leading arms and the trailing arms curve in opposite directions. To reduce weight and moment of inertia of the reamer, a cross-sectional area of the leading arms and the trailing arms is largest proximate the sleeve member and is smallest proximate the cutting head. In addition, the front cutting body, the front and rear cutting rings and the center tube may be made by additive manufacturing. Fluid can be transported entirely through the reamer to the cutting insert/workpiece interface and the guide pad/workpiece interface.
Abstract:
A rotary cutting tool includes a main body, a shank portion having a rearward end, and a flute portion having a forward end with one or more flanks. One or more connecting fluid holes are in fluid communication with a central fluid hole and terminates at a flank at the forward end of the cutting tool. One or more twisted fluid holes extend through a lobe in the flute portion and terminates at a flank at the forward end of the cutting tool. A cross-sectional shape of the connecting fluid holes and the twisted fluid holes is selected to provide enhanced delivery of fluid to the cutting edge. In one aspect, the rotary cutting tool is a modular drill and the flute portion has a pocket for holding a replaceable cutting insert.
Abstract:
A rotary cutting tool has a central, longitudinal axis. One or more internal balancing features are disposed within a cavity of the rotary cutting tool. Each internal balancing feature includes a balancing mass suspended within the cavity by a spring-like element, and an adjusting screw for effecting radial movement of the balancing mass. Each internal balancing feature can be integrally-formed with the rotary cutting tool using a 3-D printing technique. The rotary cutting tool can be any rotary cutting tool, such as a milling cutter, a boring bar, and the like. The internal balancing features are arranged at predetermined locations within the rotary cutting tool to enable static and/or dynamic balancing of the rotary cutting tool.
Abstract:
A vibration absorber assembly which includes a cantilever beam component having a proximal end and a distal end, wherein the cantilever beam component extends along a longitudinal axis between the proximal end and the distal end. A distal support element supports the distal end of the cantilever beam component, and an absorber mass is movable in at least a radial direction with respect to the longitudinal axis. First and second support media support the absorber mass with respect to the cantilever beam component. The first support medium contacts the cantilever beam component at a first support region of the cantilever beam component, and the second support medium contacts the cantilever beam component at a second support region of the cantilever beam component, the first and second support regions being located at different longitudinal positions along the cantilever beam component. Other variants and embodiments are broadly contemplated herein.
Abstract:
A toolholder assembly includes a toolholder having a toolholder shank with a non-circular cross-section, a base member having a bore with a non-circular cross-section that receives the toolholder shank, a canister positioned in the base member, a lock rod positioned in the canister, a locking ball for cooperating with the lock rod, the canister and/or the toolholder shank and an actuating element configured for cooperation with the lock rod for moving the lock rod between a locked position and an unlocked position.
Abstract:
A hydraulic expansion chuck for receiving a tool includes a chuck body, an expansion bushing which is received in the chuck body and defines a chuck opening, a pressure chamber which is interposed between the expansion bushing and the chuck body, and a reduction sleeve. The reduction sleeve is received in the chuck opening of the expansion bushing and defines a tool holder receptacle for receiving the tool to be chucked. The reduction sleeve includes a connector element configured to releasably attach the reduction sleeve to the chuck body. The reduction sleeve also may include an adjustment element configured to adjust the axial position of the tool in the tool holder receptacle.
Abstract:
A process of grinding a pre-ground part wherein the method includes the steps of: providing a pre-ground part containing a bore, and the pre-ground part having an exterior surface with one or more to-be-ground exterior surface regions; positioning a loading tool within the bore of the pre-ground part; exerting a loading tool load on the loading tool which in turn exerts a part load on the pre-ground part; removing material from the one or more to-be-ground surface regions of the pre-ground part when under the part load to form an as-ground part; and unloading the part load from the as-ground part.
Abstract:
A hydraulic expansion chuck for receiving a tool includes a chuck body, an expansion bushing which is received in the chuck body and defines a chuck opening, a pressure chamber which is interposed between the expansion bushing and the chuck body, and a reduction sleeve. The reduction sleeve is received in the chuck opening of the expansion bushing and defines a tool holder receptacle for receiving the tool to be chucked. The reduction sleeve includes a connector element configured to releasably attach the reduction sleeve to the chuck body. The reduction sleeve also may include an adjustment element configured to adjust the axial position of the tool in the tool holder receptacle.
Abstract:
A rotary cutting tool with enhanced bump-off capability is disclosed. The cutting tool includes a tool shank having a pocket. A replaceable cutting head is at least partially disposed within the pocket of the tool shank with an interference fit. A coupling pin assembly is at least partially received within a bore of the tool shank. The coupling pin assembly comprises a sleeve member and a coupling pin at least partially disposed within the sleeve member. The sleeve member includes an upper portion and a lower portion having a non-circular cross-sectional shape with a bump-off surface. An actuation screw contacts the coupling pin assembly and causes the replaceable cutting head to move relative to the tool shank. The bump-off surface of the lower portion of the sleeve member extends radially outward with respect to the coupling pin by a distance, D, thereby providing enhanced bump-off capability.
Abstract:
A rotary cutting tool includes a tool shank, a replaceable cutting head mounted on the tool shank, a coupling pin, and an actuation member. In one embodiment, the coupling pin has a cylindrical portion with a reduced-diameter portion defined by a pair of angled side walls separated by a bottom surface for cooperating with a non-threaded portion at one end of the actuation member. In another embodiment, the coupling pin has a cylindrical portion with a notch with a pair of side walls for cooperating with a frustoconical member at one end of the actuation member. When assembled, a pair of V-shaped contact surfaces on the cutting head engage a pair of oppositely facing V-shaped contact surfaces on the tool shank to provide stability against the momentum created by cutting forces in two different directions and securely hold the cutting head in place during machining operations.